A264036 Stirling transform of A077957 (aerated powers of 2).
1, 0, 2, 6, 18, 70, 330, 1694, 9202, 53334, 332090, 2212782, 15638370, 116365990, 907975146, 7413080510, 63212284498, 561747543414, 5190343710746, 49752410984526, 493844719701186, 5068209425457862, 53705511911500746, 586862875255860062, 6605213319604075186
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x^2 + 6*x^3 + 18*x^4 + 70*x^5 + 330*x^6 + 1694*x^7 + 9202*x^8 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..567
- Eric Weisstein's MathWorld, Bell Polynomial.
Programs
-
Mathematica
Table[(BellB[n, Sqrt[2]] + BellB[n, -Sqrt[2]])/2, {n, 0, 24}]
-
PARI
vector(100, n, n--; sum(k=0, n\2, 2^k*stirling(n, 2*k, 2))) \\ Altug Alkan, Nov 01 2015
Formula
a(n) = Sum_{k=0..n} A077957(k)*Stirling2(n,k).
a(n) = Sum_{k=0..floor(n/2)} 2^k*Stirling2(n,2*k).
a(n) = (Bell_n(sqrt(2)) + Bell_n(-sqrt(2)))/2, where Bell_n(x) is n-th Bell polynomial.
Bell_n(sqrt(2)) = a(n) + A264037(n)*sqrt(2).
E.g.f.: cosh(sqrt(2)*(exp(x) - 1)).
a(n) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k) * A264037(k). - Seiichi Manyama, Oct 12 2022
Comments