A264036
Stirling transform of A077957 (aerated powers of 2).
Original entry on oeis.org
1, 0, 2, 6, 18, 70, 330, 1694, 9202, 53334, 332090, 2212782, 15638370, 116365990, 907975146, 7413080510, 63212284498, 561747543414, 5190343710746, 49752410984526, 493844719701186, 5068209425457862, 53705511911500746, 586862875255860062, 6605213319604075186
Offset: 0
G.f. = 1 + 2*x^2 + 6*x^3 + 18*x^4 + 70*x^5 + 330*x^6 + 1694*x^7 + 9202*x^8 + ...
-
Table[(BellB[n, Sqrt[2]] + BellB[n, -Sqrt[2]])/2, {n, 0, 24}]
-
vector(100, n, n--; sum(k=0, n\2, 2^k*stirling(n, 2*k, 2))) \\ Altug Alkan, Nov 01 2015
A357598
Expansion of e.g.f. sinh(2 * (exp(x)-1)) / 2.
Original entry on oeis.org
0, 1, 1, 5, 25, 117, 601, 3509, 22457, 153141, 1105561, 8453557, 68339833, 581495605, 5184047961, 48259748533, 468040609593, 4719817792565, 49396003390489, 535526127566773, 6004124908829177, 69509047405180213, 829801009239621849, 10202835010223731893
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh(2*(exp(x)-1))/2)))
-
a(n) = sum(k=0, (n-1)\2, 4^k*stirling(n, 2*k+1, 2));
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, 2)-Bell_poly(n, -2)))/4;
A357572
Expansion of e.g.f. sinh(sqrt(3) * (exp(x)-1)) / sqrt(3).
Original entry on oeis.org
0, 1, 1, 4, 19, 85, 406, 2191, 13105, 84190, 573121, 4127521, 31434184, 252388957, 2126998693, 18740283556, 172134162631, 1644920020417, 16324076578870, 167938152551491, 1787952325142341, 19667748794844550, 223217829954224029, 2610546296216999197
Offset: 0
-
a(n) = sum(k=0, (n-1)\2, 3^k*stirling(n, 2*k+1, 2));
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, sqrt(3))-Bell_poly(n, -sqrt(3)))/(2*sqrt(3)));
A357664
Expansion of e.g.f. sinh( (exp(2*x) - 1)/sqrt(2) )/sqrt(2).
Original entry on oeis.org
0, 1, 2, 6, 32, 220, 1592, 11944, 96000, 847120, 8209952, 86020704, 958326272, 11243157952, 138464594816, 1789358629504, 24250275913728, 344002396594432, 5092763802452480, 78443316497892864, 1253887341918199808, 20761127890765634560
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, apply(round, Vec(serlaplace(sinh((exp(2*x)-1)/sqrt(2))/sqrt(2)))))
-
a(n) = sum(k=0, (n-1)\2, 2^(n-1-k)*stirling(n, 2*k+1, 2));
A357668
Expansion of e.g.f. sinh( 3 * (exp(x) - 1) )/3.
Original entry on oeis.org
0, 1, 1, 10, 55, 307, 2026, 14779, 114157, 933616, 8110261, 74525167, 719925328, 7279859485, 76855303981, 845280487018, 9663800287483, 114601481983855, 1407040763488354, 17856103120048783, 233883061849700137, 3157648445216335528, 43887908697233605489
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sinh(3*(exp(x)-1))/3)))
-
a(n) = sum(k=0, (n-1)\2, 9^k*stirling(n, 2*k+1, 2));
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, 3)-Bell_poly(n, -3)))/6;
A323631
Stirling transform of Pell numbers (A000129).
Original entry on oeis.org
0, 1, 3, 12, 57, 305, 1798, 11531, 79707, 589426, 4634471, 38547861, 337734048, 3105588629, 29877483743, 299906019892, 3133423928557, 34002824654365, 382507638525838, 4452923233600903, 53561431659306039, 664728428775177890, 8500763141347126563, 111886109022440334593, 1513989730079050155936
Offset: 0
-
b:= proc(n, m) option remember; `if`(n=0,
(<<2|1>, <1|0>>^m)[1, 2], m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..24); # Alois P. Heinz, Jun 23 2023
-
FullSimplify[nmax = 24; CoefficientList[Series[Exp[Exp[x] - 1] Sinh[Sqrt[2] (Exp[x] - 1)]/Sqrt[2], {x, 0, nmax}], x] Range[0, nmax]!]
Table[Sum[StirlingS2[n, k] Fibonacci[k, 2], {k, 0, n}], {n, 0, 24}]
Table[Sum[Binomial[n, k] BellB[n - k] (BellB[k, Sqrt[2]] - BellB[k, -Sqrt[2]])/(2 Sqrt[2]), {k, 0, n}], {n, 0, 24}]
A357736
Expansion of e.g.f. sin( sqrt(2) * (exp(x) - 1) )/sqrt(2).
Original entry on oeis.org
0, 1, 1, -1, -11, -45, -119, -49, 2045, 18075, 105121, 436471, 679669, -10538333, -155858247, -1404609569, -9667430739, -46708291093, -25694453615, 3002522206471, 49051481154341, 546022210068595, 4800733688293929, 31399017314213487, 75507020603213405
Offset: 0
-
my(N=30, x='x+O('x^N)); concat(0, apply(round, Vec(serlaplace(sin(sqrt(2)*(exp(x)-1))/sqrt(2)))))
-
a(n) = sum(k=0, (n-1)\2, (-2)^k*stirling(n, 2*k+1, 2));
-
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!);
a(n) = round((Bell_poly(n, sqrt(2)*I)-Bell_poly(n, -sqrt(2)*I))/(2*sqrt(2)*I));
Showing 1-7 of 7 results.
Comments