A204420 Triangle T(n,k) giving number of degree-2n permutations which decompose into exactly k cycles of even length, k=0..n.
1, 0, 1, 0, 6, 3, 0, 120, 90, 15, 0, 5040, 4620, 1260, 105, 0, 362880, 378000, 132300, 18900, 945, 0, 39916800, 45571680, 18711000, 3534300, 311850, 10395, 0, 6227020800, 7628100480, 3511347840, 794593800, 94594500, 5675670, 135135
Offset: 0
Examples
1; 0, 1, 0, 6, 3; 0, 120, 90, 15; 0, 5040, 4620, 1260, 105; 0, 362880, 378000, 132300, 18900, 945; 0, 39916800, 45571680, 18711000, 3534300, 311850, 10395;
Links
- Alois P. Heinz, Rows n = 0..85, flattened
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Angelo Lucia and Amanda Young, A Nonvanishing Spectral Gap for AKLT Models on Generalized Decorated Graphs, arXiv:2212.11872 [math-ph], 2022.
Crossrefs
Programs
-
Maple
T_row:= proc(n) local k; seq(doublefactorial(2*n-1)*2^(n-k)* coeff(expand(pochhammer(x, n)), x, k), k=0..n) end: seq(T_row(n), n=0..10);
-
Mathematica
nn=12;Prepend[Map[Prepend[Select[#,#>0&],0]&,Table[(Range[0, nn]!CoefficientList[ Series[(1-x^2)^(-y/2),{x,0,nn}],{x,y}])[[n]],{n,3,nn,2}]],{1}]//Grid (* Geoffrey Critzer, Jul 21 2013 *)
-
PARI
T(n,k) = (2*n)!/(2^n*n!)*(-2)^(n-k)*stirling(n,k,1); \\ Andrew Howroyd, Feb 12 2018
Comments