cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204420 Triangle T(n,k) giving number of degree-2n permutations which decompose into exactly k cycles of even length, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 6, 3, 0, 120, 90, 15, 0, 5040, 4620, 1260, 105, 0, 362880, 378000, 132300, 18900, 945, 0, 39916800, 45571680, 18711000, 3534300, 311850, 10395, 0, 6227020800, 7628100480, 3511347840, 794593800, 94594500, 5675670, 135135
Offset: 0

Views

Author

José H. Nieto S., Jan 15 2012

Keywords

Comments

The row polynomials t(n,x):= sum(T(n,k)*x^k, k=0..n) satisfy the recurrence relation t(n,x) = (2n-1)*(x+2n-2)*t(n-1,x), with t(0,x)=1, hence t(n,x)=(2n-1)!!*x(x+2)(x+4)...(x+2n-2).

Examples

			1;
0,        1,
0,        6,        3;
0,      120,       90,       15;
0,     5040,     4620,     1260,     105;
0,   362880,   378000,   132300,   18900,    945;
0, 39916800, 45571680, 18711000, 3534300, 311850, 10395;
		

Crossrefs

Row sums give: A001818. - Alois P. Heinz, Jul 21 2013

Programs

  • Maple
    T_row:= proc(n) local k; seq(doublefactorial(2*n-1)*2^(n-k)* coeff(expand(pochhammer(x, n)), x, k), k=0..n) end: seq(T_row(n), n=0..10);
  • Mathematica
    nn=12;Prepend[Map[Prepend[Select[#,#>0&],0]&,Table[(Range[0, nn]!CoefficientList[ Series[(1-x^2)^(-y/2),{x,0,nn}],{x,y}])[[n]],{n,3,nn,2}]],{1}]//Grid (* Geoffrey Critzer, Jul 21 2013 *)
  • PARI
    T(n,k) = (2*n)!/(2^n*n!)*(-2)^(n-k)*stirling(n,k,1); \\ Andrew Howroyd, Feb 12 2018

Formula

T(n,k) = (2n-1)!!*2^(n-k)*A132393(n,k).
T(n,k) = (2n-1)T(n-1,k-1) + (2n-1)(2n-2)*T(n-1,k); T(0,0)=1, T(n,0)=0 for n>0,
T(n,n) = (2n-1)!! = A001147(n).
T(n,1) = (2n-1)! = A009445(n-1).