A204631 Expansion of 1/(1 - x - x^2 + x^5 - x^7).
1, 1, 2, 3, 5, 7, 11, 17, 26, 40, 62, 96, 148, 229, 354, 547, 845, 1306, 2018, 3118, 4818, 7445, 11504, 17776, 27468, 42444, 65585, 101343, 156597, 241976, 373905, 577764, 892770, 1379522, 2131659, 3293873, 5089744, 7864752, 12152738, 18778601, 29016988
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 8.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,1).
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^2+x^5-x^7))); // G. C. Greubel, Nov 03 2018 -
Maple
seq(coeff(series(1/(1-x-x^2+x^5-x^7), x, n+1), x, n), n = 0..50); # G. C. Greubel, Mar 16 2020
-
Mathematica
CoefficientList[Series[1/(1 - x - x^2 + x^5 - x^7), {x, 0, 50}], x] LinearRecurrence[{1,1,0,0,-1,0,1},{1,1,2,3,5,7,11},50] (* Harvey P. Dale, Aug 28 2013 *)
-
PARI
my(x='x+O('x^50)); Vec(1/(1-x-x^2+x^5-x^7)) \\ G. C. Greubel, Nov 16 2016
Formula
a(n) = a(n-1) + a(n-2) - a(n-5) + a(n-7). - Franck Maminirina Ramaharo, Nov 02 2018
Comments