A204671 a(n) = n^n (mod 6).
1, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
Programs
-
Magma
[1] cat &cat [[1, 4, 3, 4, 5, 0]^^20]; // Wesley Ivan Hurt, Jun 23 2016
-
Maple
A204671:=n->[1, 4, 3, 4, 5, 0][(n mod 6)+1]: 1, seq(A204671(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
-
Mathematica
Table[PowerMod[n,n,6], {n,0,140}] Join[{1},LinearRecurrence[{0, 0, 0, 0, 0, 1},{1, 4, 3, 4, 5, 0},86]] (* Ray Chandler, Aug 26 2015 *)
-
PARI
a(n)=lift(Mod(n, 6)^n) \\ Andrew Howroyd, Feb 25 2018
Formula
G.f.: (x^6-5*x^5-4*x^4-3*x^3-4*x^2-x-1)/((x-1)*(x+1)*(x^2-x+1)*(x^2+x+1)). [Colin Barker, Jul 20 2012]
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(0) = 1, a(n) = (17 - cos(n*Pi) - 8*cos(n*Pi/3) - 8*cos(2*n*Pi/3) - 4*sqrt(3)*sin(n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/6 for n>0. (End)
Comments