cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A204671 a(n) = n^n (mod 6).

Original entry on oeis.org

1, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4, 3, 4, 5, 0, 1, 4
Offset: 0

Views

Author

Keywords

Comments

For n>0, periodic with period 6 = A174824: repeat [1, 4, 3, 4, 5, 0].

Crossrefs

Programs

  • Magma
    [1] cat &cat [[1, 4, 3, 4, 5, 0]^^20]; // Wesley Ivan Hurt, Jun 23 2016
    
  • Maple
    A204671:=n->[1, 4, 3, 4, 5, 0][(n mod 6)+1]: 1, seq(A204671(n), n=0..100); # Wesley Ivan Hurt, Jun 23 2016
  • Mathematica
    Table[PowerMod[n,n,6], {n,0,140}]
    Join[{1},LinearRecurrence[{0, 0, 0, 0, 0, 1},{1, 4, 3, 4, 5, 0},86]] (* Ray Chandler, Aug 26 2015 *)
  • PARI
    a(n)=lift(Mod(n, 6)^n) \\ Andrew Howroyd, Feb 25 2018

Formula

G.f.: (x^6-5*x^5-4*x^4-3*x^3-4*x^2-x-1)/((x-1)*(x+1)*(x^2-x+1)*(x^2+x+1)). [Colin Barker, Jul 20 2012]
From Wesley Ivan Hurt, Jun 23 2016: (Start)
a(n) = a(n-6) for n>5.
a(0) = 1, a(n) = (17 - cos(n*Pi) - 8*cos(n*Pi/3) - 8*cos(2*n*Pi/3) - 4*sqrt(3)*sin(n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/6 for n>0. (End)
a(n) = A010875(A000312(n)). - Michel Marcus, Jun 27 2016