A204674 a(n) = 4*n^3 + 5*n^2 + 2*n + 1.
1, 12, 57, 160, 345, 636, 1057, 1632, 2385, 3340, 4521, 5952, 7657, 9660, 11985, 14656, 17697, 21132, 24985, 29280, 34041, 39292, 45057, 51360, 58225, 65676, 73737, 82432, 91785, 101820, 112561, 124032, 136257, 149260, 163065, 177696, 193177, 209532, 226785, 244960, 264081
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Haskell
a204674 n = n * (n * (4 * n + 5) + 2) + 1
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{1,12,57,160},50] (* or *) CoefficientList[ Series[(1+3x)(1+5x)/(1-x)^4,{x,0,50}],x] (* Harvey P. Dale, Jun 25 2021 *)
-
PARI
a(n)={ 4*n^3 + 5*n^2 + 2*n + 1 } \\ Andrew Howroyd, Jan 07 2020
Formula
a(n) = (4*n^2 + n + 1)*(n + 1).
G.f.: (1 + 3*x)*(1 + 5*x)/(1 - x)^4. - Andrew Howroyd, Jan 07 2020
E.g.f.: exp(x)*(1 + 11*x + 17*x^2 + 4*x^3). - Elmo R. Oliveira, Aug 08 2025
Extensions
Terms a(26) and beyond from Andrew Howroyd, Jan 07 2020