cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A054567 a(n) = 4*n^2 - 7*n + 4.

Original entry on oeis.org

1, 6, 19, 40, 69, 106, 151, 204, 265, 334, 411, 496, 589, 690, 799, 916, 1041, 1174, 1315, 1464, 1621, 1786, 1959, 2140, 2329, 2526, 2731, 2944, 3165, 3394, 3631, 3876, 4129, 4390, 4659, 4936, 5221, 5514, 5815, 6124, 6441, 6766, 7099, 7440, 7789, 8146, 8511, 8884
Offset: 1

Views

Author

Keywords

Comments

The number 1 is placed in the middle of a sheet of squared paper and the numbers 2, 3, 4, 5, 6, etc. are written in a clockwise spiral around 1, as in A068225 etc. This sequence is read off along one of the rays from 1.
Ulam's spiral (W spoke of A054552). - Robert G. Wilson v, Oct 31 2011
Also, numbers of the form m*(4*m+1)+1 for nonnegative m. - Bruno Berselli, Jan 06 2016
The sequence forms the 1x2 diagonal of the square maze arrangement in A081344. - Jarrod G. Sage, Jul 17 2024

Crossrefs

Cf. A266883: m*(4*m+1)+1 for m = 0,-1,1,-2,2,-3,3,...
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 8*n+a(n-1)-11 for n>1, a(1)=1. - Vincenzo Librandi, Aug 07 2010
a(n) = A204674(n-1) / n. - Reinhard Zumkeller, Jan 18 2012
From Colin Barker, Oct 25 2014: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3).
G.f.: -x*(4*x^2+3*x+1) / (x-1)^3. (End)
E.g.f.: exp(x)*(4 - 3*x + 4*x^2) - 4. - Stefano Spezia, Apr 24 2024
a(n) = A016742(n-1) + n. - Jarrod G. Sage, Jul 17 2024

Extensions

Edited by Frank Ellermann, Feb 24 2002
Typo fixed by Charles R Greathouse IV, Oct 28 2009

A226449 a(n) = n*(5*n^2-8*n+5)/2.

Original entry on oeis.org

0, 1, 9, 39, 106, 225, 411, 679, 1044, 1521, 2125, 2871, 3774, 4849, 6111, 7575, 9256, 11169, 13329, 15751, 18450, 21441, 24739, 28359, 32316, 36625, 41301, 46359, 51814, 57681, 63975, 70711, 77904, 85569, 93721, 102375, 111546, 121249, 131499, 142311, 153700
Offset: 0

Views

Author

Bruno Berselli, Jun 07 2013

Keywords

Comments

Sequences of the type b(m)+m*b(m-1), where b is a polygonal number:
A006003(n) = A000217(n) + n*A000217(n-1) (b = triangular numbers);
A069778(n) = A000290(n+1) + (n+1)*A000290(n) (b = square numbers);
A143690(n) = A000326(n+1) + (n+1)*A000326(n) (b = pentagonal numbers);
A212133(n) = A000384(n) + n*A000384(n-1) (b = hexagonal numbers);
a(n) = A000566(n) + n*A000566(n-1) (b = heptagonal numbers);
A226450(n) = A000567(n) + n*A000567(n-1) (b = octagonal numbers);
A226451(n) = A001106(n) + n*A001106(n-1) (b = nonagonal numbers);
A204674(n) = A001107(n+1) + (n+1)*A001107(n) (b = decagonal numbers).

Crossrefs

Programs

  • Magma
    [n*(5*n^2-8*n+5)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,9,39]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (5 n^2 - 8 n + 5)/2, {n, 0, 40}]
    CoefficientList[Series[x (1 + 5 x + 9 x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,9,39},50] (* Harvey P. Dale, May 19 2017 *)
  • PARI
    a(n)=n*(5*n^2-8*n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(1+5*x+9*x^2)/(1-x)^4.
a(n) - a(-n) = A008531(n) for n>0.

A033293 A Connell-like sequence: take 1 number = 1 (mod Q), 2 numbers = 2 (mod Q), 3 numbers = 3 (mod Q), etc., where Q = 8.

Original entry on oeis.org

1, 2, 10, 11, 19, 27, 28, 36, 44, 52, 53, 61, 69, 77, 85, 86, 94, 102, 110, 118, 126, 127, 135, 143, 151, 159, 167, 175, 176, 184, 192, 200, 208, 216, 224, 232, 233, 241, 249, 257, 265, 273, 281, 289, 297, 298, 306, 314, 322, 330, 338, 346, 354, 362, 370, 371, 379, 387, 395, 403, 411
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A054552 (left edge), A001107 (right edge), A204674 (row sums), A204675 (central terms).

Programs

  • Haskell
    a033293 n k = a033293_tabl !! (n-1) !! (k-1)
    a033293_row n = a033293_tabl !! (n-1)
    a033293_tabl = f 1 [1..] where
       f k xs = ys : f (k+1) (dropWhile (<= last ys) xs) where
         ys  = take k $ filter ((== 0) . (`mod` 8) . (subtract k)) xs
    -- Reinhard Zumkeller, Jan 18 2012 2011
  • Mathematica
    row[1] = {1}; row[n_] := row[n] = Table[row[n-1][[-1]] + 8k + 1, {k, 0, n-1}]; Table[row[n], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 25 2013 *)

Extensions

More terms from jeroen.lahousse(AT)icl.com
Offset changed by Reinhard Zumkeller, Jan 18 2012

A226450 a(n) = n*(3*n^2 - 5*n + 3).

Original entry on oeis.org

0, 1, 10, 45, 124, 265, 486, 805, 1240, 1809, 2530, 3421, 4500, 5785, 7294, 9045, 11056, 13345, 15930, 18829, 22060, 25641, 29590, 33925, 38664, 43825, 49426, 55485, 62020, 69049, 76590, 84661, 93280, 102465, 112234, 122605, 133596, 145225, 157510, 170469
Offset: 0

Views

Author

Bruno Berselli, Jun 07 2013

Keywords

Comments

See the comment in A226449.
For n >= 3, also the detour index of the n-barbell graph. - Eric W. Weisstein, Dec 20 2017

Crossrefs

Cf. A000567.
Similar sequences of the type b(m)+m*b(m-1), where b is a polygonal number: A006003, A069778, A143690, A204674, A212133, A226449, A226451.

Programs

  • Magma
    [n*(3*n^2-5*n+3): n in [0..40]];
    
  • Magma
    I:=[0,1,10,45]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (3 n^2 - 5 n + 3), {n, 0, 40}]
    CoefficientList[Series[x (1 + 6 x + 11 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{4, -6, 4, -1}, {1, 10, 45, 124}, {0, 20}] (* Eric W. Weisstein, Dec 20 2017 *)
  • PARI
    a(n) = n*(3*n^2 - 5*n + 3); \\ Altug Alkan, Dec 20 2017

Formula

G.f.: x*(1+6*x+11*x^2)/(1-x)^4.
a(n) = A000567(n) + n*A000567(n-1).

A226451 a(n) = n*(7*n^2-12*n+7)/2.

Original entry on oeis.org

0, 1, 11, 51, 142, 305, 561, 931, 1436, 2097, 2935, 3971, 5226, 6721, 8477, 10515, 12856, 15521, 18531, 21907, 25670, 29841, 34441, 39491, 45012, 51025, 57551, 64611, 72226, 80417, 89205, 98611, 108656, 119361, 130747, 142835, 155646, 169201, 183521
Offset: 0

Views

Author

Bruno Berselli, Jun 07 2013

Keywords

Comments

See the comment in A226449.

Crossrefs

Cf. A001106.
Similar sequences of the type b(m)+m*b(m-1), where b is a polygonal number: A006003, A069778, A143690, A204674, A212133, A226449, A226450.

Programs

  • Magma
    [n*(7*n^2-12*n+7)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,11,51]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Table[n (7 n^2 - 12 n + 7)/2, {n, 0, 40}]
    CoefficientList[Series[x (1 + 7 x + 13 x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2013 *)

Formula

G.f.: x*(1+7*x+13*x^2)/(1-x)^4.
a(n) = A001106(n) + n*A001106(n-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n >= 4. - Wesley Ivan Hurt, Oct 15 2023
Showing 1-5 of 5 results.