A204675 a(n) = 16*n^2 + 2*n + 1.
1, 19, 69, 151, 265, 411, 589, 799, 1041, 1315, 1621, 1959, 2329, 2731, 3165, 3631, 4129, 4659, 5221, 5815, 6441, 7099, 7789, 8511, 9265, 10051, 10869, 11719, 12601, 13515, 14461, 15439, 16449, 17491, 18565, 19671, 20809, 21979, 23181, 24415, 25681, 26979
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Haskell
a204675 n = 2 * n * (8 * n + 1) + 1
-
Magma
I:=[1, 19, 69]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 19 2012
-
Mathematica
CoefficientList[Series[(1+x)*(1+15*x)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 19, 69}, 50] (* Vincenzo Librandi, Mar 19 2012 *)
-
PARI
a(n)=16*n^2+2*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (1+x)*(1+15*x)/(1-x)^3. - Bruno Berselli, Jan 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Jun 09 2023
E.g.f.: exp(x)*(1 + 2*x*(9 + 8*x)). - Elmo R. Oliveira, Oct 18 2024
Comments