cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h
Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing.
Guide to related sequences:
...
s(n)=prime(n), primes
... k(n), j(n): A204892, A204893
... s(k(n)),s(j(n)): A204894, A204895
... s(k(n))-s(j(n)): A204896, A204897
s(n)=prime(n+1), odd primes
... k(n), j(n): A204900, A204901
... s(k(n)),s(j(n)): A204902, A204903
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n+2), primes >=5
... k(n), j(n): A204908, A204909
... s(k(n)),s(j(n)): A204910, A204911
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n)*prime(n+1) product of consecutive primes
... k(n), j(n): A205146, A205147
... s(k(n)),s(j(n)): A205148, A205149
... s(k(n))-s(j(n)): A205150, A205151
s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes
... k(n), j(n): A205153, A205154
... s(k(n)),s(j(n)): A205372, A205373
... s(k(n))-s(j(n)): A205374, A205375
s(n)=2^(n-1), powers of 2
... k(n), j(n): A204979, A001511(?)
... s(k(n)),s(j(n)): A204981, A006519(?)
... s(k(n))-s(j(n)): A204983(?), A204984
s(n)=2^n, powers of 2
... k(n), j(n): A204987, A204988
... s(k(n)),s(j(n)): A204989, A140670(?)
... s(k(n))-s(j(n)): A204991, A204992
s(n)=C(n+1,2), triangular numbers
... k(n), j(n): A205002, A205003
... s(k(n)),s(j(n)): A205004, A205005
... s(k(n))-s(j(n)): A205006, A205007
s(n)=n^2, squares
... k(n), j(n): A204905, A204995
... s(k(n)),s(j(n)): A204996, A204997
... s(k(n))-s(j(n)): A204998, A204999
s(n)=(2n-1)^2, odd squares
... k(n), j(n): A205378, A205379
... s(k(n)),s(j(n)): A205380, A205381
... s(k(n))-s(j(n)): A205382, A205383
s(n)=n(3n-1), pentagonal numbers
... k(n), j(n): A205138, A205139
... s(k(n)),s(j(n)): A205140, A205141
... s(k(n))-s(j(n)): A205142, A205143
s(n)=n(2n-1), hexagonal numbers
... k(n), j(n): A205130, A205131
... s(k(n)),s(j(n)): A205132, A205133
... s(k(n))-s(j(n)): A205134, A205135
s(n)=C(2n-2,n-1), central binomial coefficients
... k(n), j(n): A205010, A205011
... s(k(n)),s(j(n)): A205012, A205013
... s(k(n))-s(j(n)): A205014, A205015
s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients)
... k(n), j(n): A205386, A205387
... s(k(n)),s(j(n)): A205388, A205389
... s(k(n))-s(j(n)): A205390, A205391
s(n)=n(n+1), oblong numbers
... k(n), j(n): A205018, A205028
... s(k(n)),s(j(n)): A205029, A205030
... s(k(n))-s(j(n)): A205031, A205032
s(n)=n!, factorials
... k(n), j(n): A204932, A204933
... s(k(n)),s(j(n)): A204934, A204935
... s(k(n))-s(j(n)): A204936, A204937
s(n)=n!!, double factorials
... k(n), j(n): A204982, A205100
... s(k(n)),s(j(n)): A205101, A205102
... s(k(n))-s(j(n)): A205103, A205104
s(n)=3^n-2^n
... k(n), j(n): A205000, A205107
... s(k(n)),s(j(n)): A205108, A205109
... s(k(n))-s(j(n)): A205110, A205111
s(n)=Fibonacci(n+1)
... k(n), j(n): A204924, A204925
... s(k(n)),s(j(n)): A204926, A204927
... s(k(n))-s(j(n)): A204928, A204929
s(n)=Fibonacci(2n-1)
... k(n), j(n): A205442, A205443
... s(k(n)),s(j(n)): A205444, A205445
... s(k(n))-s(j(n)): A205446, A205447
s(n)=Fibonacci(2n)
... k(n), j(n): A205450, A205451
... s(k(n)),s(j(n)): A205452, A205453
... s(k(n))-s(j(n)): A205454, A205455
s(n)=Lucas(n)
... k(n), j(n): A205114, A205115
... s(k(n)),s(j(n)): A205116, A205117
... s(k(n))-s(j(n)): A205118, A205119
s(n)=n*(2^(n-1))
... k(n), j(n): A205122, A205123
... s(k(n)),s(j(n)): A205124, A205125
... s(k(n))-s(j(n)): A205126, A205127
s(n)=ceiling[n^2/2]
... k(n), j(n): A205394, A205395
... s(k(n)),s(j(n)): A205396, A205397
... s(k(n))-s(j(n)): A205398, A205399
s(n)=floor[(n+1)^2/2]
... k(n), j(n): A205402, A205403
... s(k(n)),s(j(n)): A205404, A205405
... s(k(n))-s(j(n)): A205406, A205407

Examples

			Let s(k)=prime(k).  As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here:
k...........1..2..3..4..5...6...7...8...9
s(k)........2..3..5..7..11..13..17..19..23
...
s(k)-s(1)......1..3..5..9..11..15..17..21..27
s(k)-s(2).........2..4..8..10..14..16..20..26
s(k)-s(3)............2..6..8...12..14..18..24
s(k)-s(4)...............4..6...10..12..16..22
...
least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2.
least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3.
least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]          (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j],
       {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]          (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n],
       Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]          (* A204891 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]          (* A204892 *)
    Table[j[n], {n, 1, z2}]          (* A204893 *)
    Table[s[k[n]], {n, 1, z2}]       (* A204894 *)
    Table[s[j[n]], {n, 1, z2}]       (* A204895 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204896 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *)
    (* Program 2: generates A204892 and A204893 rapidly *)
    s = Array[Prime[#] &, 120];
    lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
  • PARI
    a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ Charles R Greathouse IV, Mar 20 2013

A205383 a(n) = (1/n)*A205382(n).

Original entry on oeis.org

8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2, 8, 4, 8, 1, 8, 4, 8, 2
Offset: 1

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

Possibly a(n) = (1/n)*lcm(8,n); see A205382.
For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)

A205379 The index j

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 5, 1, 6, 3, 1, 2, 8, 2, 9, 2, 1, 5, 11, 1, 3, 6, 2, 3, 14, 1, 15, 4, 3, 8, 2, 2, 18, 9, 4, 2, 20, 1, 21, 5, 1, 11, 23, 1, 4, 3, 6, 6, 26, 2, 1, 3, 7, 14, 29, 1
Offset: 1

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)

A205382 s(k)-s(j), where (s(k),s(j)) is the least such pair for which n divides their difference, and s(j)=(2j-1)^2.

Original entry on oeis.org

8, 8, 24, 8, 40, 24, 56, 8, 72, 40, 88, 24, 104, 56, 120, 16, 136, 72, 152, 40, 168, 88, 184, 24, 200, 104, 216, 56, 232, 120, 248, 32, 264, 136, 280, 72, 296, 152, 312, 40, 328, 168, 344, 88, 360, 184, 376, 48, 392, 200, 408, 104, 424, 216, 440, 56, 456
Offset: 1

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

Duplicate of A109049? For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)

Formula

a(n) = n*A205383(n). - Luce ETIENNE, Feb 19 2020

A205376 Ordered differences of distinct odd squares, stored in triangle.

Original entry on oeis.org

8, 24, 16, 48, 40, 24, 80, 72, 56, 32, 120, 112, 96, 72, 40, 168, 160, 144, 120, 88, 48, 224, 216, 200, 176, 144, 104, 56, 288, 280, 264, 240, 208, 168, 120, 64, 360, 352, 336, 312, 280, 240, 192, 136, 72, 440, 432, 416, 392, 360, 320, 272, 216, 152
Offset: 1

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

a(n) = 8*A049777(n). For a guide to related sequences, see A204892.
Triangle T(n,k), k>=0, n>=1, read by rows, given by T(n,k) = (2*n+1)^2 - (2*k+1)^2. - Philippe Deléham, Mar 07 2013

Examples

			a(1) = s(2)-s(1) =  9-1 = 8,
a(2) = s(3)-s(1) = 25-1 = 24,
a(3) = s(3)-s(2) = 25-9 = 16,
a(4) = s(4)-s(1) = 49-1 = 48,
a(5) = s(4)-s(2) = 49-9 = 40.
Triangle begins:
8
24,  16
48,  40,  24
80,  72,  56,  32
120, 112, 96,  72,  40
168, 160, 144, 120, 88, 48, ... - _Philippe Deléham_, Mar 07 2013
		

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)

A205380 Least s(k) such that n divides s(k)-s(j) for some j

Original entry on oeis.org

9, 9, 25, 9, 49, 25, 81, 9, 81, 49, 169, 25, 225, 81, 121, 25, 361, 81, 441, 49, 169, 169, 625, 25, 225, 225, 225, 81, 961, 121, 1089, 81, 289, 361, 289, 81, 1521, 441, 361, 49, 1849, 169, 2025, 169, 361, 625, 2401, 49, 441, 225, 529, 225, 3025, 225
Offset: 1

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)

A205381 s(A205379), where s(j)=(2j-1)^2.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 25, 1, 9, 9, 81, 1, 121, 25, 1, 9, 225, 9, 289, 9, 1, 81, 441, 1, 25, 121, 9, 25, 729, 1, 841, 49, 25, 225, 9, 9, 1225, 289, 49, 9, 1521, 1, 1681, 81, 1, 441, 2025, 1, 49, 25, 121, 121, 2601, 9, 1, 25, 169, 729, 3249, 1
Offset: 1

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)

A205377 Least h such that n divides the h-th difference between distinct odd primes, as ordered in A205376.

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 9, 1, 8, 5, 20, 2, 27, 9, 11, 3, 44, 8, 54, 5, 16, 20, 77, 2, 24, 27, 23, 9, 119, 11, 135, 10, 31, 44, 30, 8, 189, 54, 40, 5, 230, 16, 252, 20, 37, 77, 299, 4, 49, 24, 61, 27, 377, 23, 46, 9, 73, 119, 464, 11
Offset: 1

Author

Clark Kimberling, Jan 26 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205378.)
Showing 1-8 of 8 results.