A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).
2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1
Keywords
A205378
Least k such that n divides s(k)-s(j) for some j
2, 2, 3, 2, 4, 3, 5, 2, 5, 4, 7, 3, 8, 5, 6, 3, 10, 5, 11, 4, 7, 7, 13, 3, 8, 8, 8, 5, 16, 6, 17, 5, 9, 10, 9, 5, 20, 11, 10, 4, 22, 7, 23, 7, 10, 13, 25, 4, 11, 8, 12, 8, 28, 8, 11, 5, 13, 16, 31, 6
Offset: 1
Keywords
Comments
See A204892 for a discussion and guide to related sequences.
Programs
-
Mathematica
s[n_] := s[n] = (2 n - 1)^2; z1 = 600; z2 = 60; Table[s[n], {n, 1, 30}] (* A016754, odd squares *) u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}] (* A205376 *) %/8 (* A049777 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]] Table[d[n], {n, 1, z2}] (* A205377 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2] m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2] j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2 Table[k[n], {n, 1, z2}] (* A205378 *) Table[j[n], {n, 1, z2}] (* A205379 *) Table[s[k[n]], {n, 1, z2}] (* A205380 *) Table[s[j[n]], {n, 1, z2}] (* A205381 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205382 *) Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205383 *)
A213268 Denominators of the Inverse semi-binomial transform of A001477(n) read downwards antidiagonals.
1, 1, 1, 1, 2, 1, 1, 1, 4, 4, 1, 2, 2, 8, 2, 1, 1, 4, 1, 16, 16, 1, 2, 1, 8, 8, 32, 16, 1, 1, 4, 4, 16, 8, 64, 64, 1, 2, 2, 8, 4, 32, 32, 128, 16, 1, 1, 4, 2, 16, 16, 64, 8, 256, 256, 1, 2, 1, 8, 8, 32, 4, 128, 128, 512, 256, 1, 1, 4, 4, 16, 2, 64, 64, 256, 128, 1024, 1024
Offset: 0
Comments
Starting from any sequence a(k) in the first row, define the array T(n,k) of the inverse semi-binomial transform by T(0,k) = a(k), T(n,k) = T(n-1,k+1) -T(n-1,k)/2, n>=1.
Here, where the first row is the nonnegative integers, the array is
0 1 2 3 4 5 6 7 8 =A001477(n)
1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16 1 =A106617(n+8)/TBD
5/16 11/32 3/8 13/32 7/16 15/32 1/2 17/32 9/16
3/16 13/64 7/32 15/64 1/4 17/64 9/32 19/64 5/16
7/64 15/128 1/8 17/128 9/64 19/128 5/32 21/128 11/64
1/16 17/256 9/128 19/256 5/64 21/256 11/128 23/256 3/32.
Examples
The array of denominators starts: 1 1 1 1 1 1 1 1 1 1 1 ... 1 2 1 2 1 2 1 2 1 2 1 ... 1 4 2 4 1 4 2 4 1 4 2 ... 4 8 1 8 4 8 2 8 4 8 1 ... 2 16 8 16 4 16 8 16 1 16 8 ... 16 32 8 32 16 32 2 32 16 32 8 ... 16 64 32 64 4 64 32 64 16 64 32 ... 64 128 8 128 64 128 32 128 64 128 16 ... 16 256 128 256 64 256 128 256 32 256 128 ... 256 512 128 512 256 512 64 512 256 512 128 ... All entries are powers of 2.
Programs
-
Maple
A213268frac := proc(n,k) if n = 0 then return k ; else return procname(n-1,k+1)-procname(n-1,k)/2 ; end if; end proc: A213268 := proc(n,k) denom(A213268frac(n,k)) ; end proc: # R. J. Mathar, Jun 30 2012
-
Mathematica
T[0, k_] := k; T[n_, k_] := T[n, k] = T[n-1, k+1] - T[n-1, k]/2; Table[T[n-k, k] // Denominator, {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 12 2014 *)
A205382 s(k)-s(j), where (s(k),s(j)) is the least such pair for which n divides their difference, and s(j)=(2j-1)^2.
8, 8, 24, 8, 40, 24, 56, 8, 72, 40, 88, 24, 104, 56, 120, 16, 136, 72, 152, 40, 168, 88, 184, 24, 200, 104, 216, 56, 232, 120, 248, 32, 264, 136, 280, 72, 296, 152, 312, 40, 328, 168, 344, 88, 360, 184, 376, 48, 392, 200, 408, 104, 424, 216, 440, 56, 456
Offset: 1
Keywords
Programs
-
Mathematica
(See the program at A205378.)
Formula
a(n) = n*A205383(n). - Luce ETIENNE, Feb 19 2020
A226044 Period of length 8: 1, 64, 16, 64, 4, 64, 16, 64.
1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64, 1, 64, 16, 64, 4, 64, 16, 64
Offset: 0
Comments
A002378(n)/A016754(n) gives 0/1, 2/9, 6/25, 12/49, 20/81, 30/121, 42/169, 56/225,..., where A016754(n) = 4*A002378(n) + 1;
A142705(n)/A154615(n+1) gives 0/1, 3/16, 2/9, 15/64, 6/25, 35/144, 12/49, 63/256,..., where A142705(n) = 4*A154615(n+1) + A010685(n);
A061037(n)/A061038(n) gives 0/1, 5/36, 3/16, 21/100, 2/9, 45/196, 15/64, 77/324,..., where A061038(n) = 4*A061037(n) + A177499(n);
A225948(n)/A226008(n) gives 0/1, 9/100, 5/36, 33/196, 3/16, 65/324, 21/100, 105/484,..., where A226008(n) = 4*A225948(n) + a(n).
See also the triangle in Example lines.
Examples
Triangle in which the terms of each line are repeated: A000012: 1, ... A010685: 1, 4, ... A177499: 1, 16, 4, 16, ... A226044: 1, 64, 16, 64, 4, 64, 16, 64, ... 1, 256, 64, 256, 16, 256, 64, 256, 4, 256, 64, 256, 16, 256, 64, 256, ...
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,1).
Programs
-
Mathematica
Table[{1, 64, 16, 64, 4, 64, 16, 64}, {7}] // Flatten (* Jean-François Alcover, May 24 2013 *)
Formula
a(n) = A205383(n+7)^2.
G.f.: (1+64*x+16*x^2+64*x^3+4*x^4+64*x^5+16*x^6+64*x^7)/((1-x)*(1+x)*(1+x^2)*(1+x^4)). [Bruno Berselli, May 25 2013]
Comments
Examples
Links
Crossrefs
Programs
Mathematica
PARI