A205523 Numbers k such that gcd(k, sigma(k)) == sigma(k) (mod k).
1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 18, 19, 20, 23, 24, 28, 29, 31, 37, 40, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 83, 88, 89, 97, 101, 103, 104, 107, 109, 113, 120, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 180, 181, 191, 193, 196, 197, 199
Offset: 1
Keywords
Examples
Number 24 is in sequence because gcd(24, sigma(24)) = (sigma(24)=60) mod 24 = 12.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[300], Mod[GCD[#, DivisorSigma[1, #]] - DivisorSigma[1, #], #] == 0 &]
-
PARI
isok(n) = (gcd(n, sigma(n)) % n) == (sigma(n) % n); \\ Michel Marcus, Dec 22 2017
Extensions
Corrected by T. D. Noe, Feb 03 2012
Comments