cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A009194 a(n) = gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2
Offset: 1

Views

Author

Keywords

Comments

LCM of common divisors of n and sigma(n). It equals n if n is multiply perfect (A007691). - Labos Elemer, Aug 14 2002

Crossrefs

Programs

Formula

A000005(a(n)) = A073802(n). - Reinhard Zumkeller, Mar 12 2010
A006530(a(n)) = A082062(n). - Reinhard Zumkeller, Jul 10 2011
a(A014567(n)) = 1; A069059(a(n)) > 1. - Reinhard Zumkeller, Mar 23 2013
a(n) = n/A017666(n). - Antti Karttunen, May 22 2017

A205524 Numbers n such that gcd(n, sigma(n)) is not equal to sigma(n) mod n.

Original entry on oeis.org

4, 8, 9, 10, 14, 15, 16, 21, 22, 25, 26, 27, 30, 32, 33, 34, 35, 36, 38, 39, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Jaroslav Krizek, Jan 28 2012

Keywords

Comments

All terms are nonprime numbers. Complement of A205523.

Examples

			Number 25 is in sequence because sigma(25)=31, gcd(25,31) = 1, and 31 mod 25 = 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100], Mod[GCD[#, DivisorSigma[1, #]] - DivisorSigma[1, #], #] > 0 &] (* T. D. Noe, Feb 03 2012 *)

Extensions

Corrected by T. D. Noe, Feb 03 2012

A205525 Nonprime numbers k such that gcd(k, sigma(k)) == sigma(k) (mod k).

Original entry on oeis.org

1, 6, 12, 18, 20, 24, 28, 40, 56, 88, 104, 120, 180, 196, 224, 234, 240, 360, 368, 420, 464, 496, 540, 600, 650, 672, 780, 992, 1080, 1344, 1504, 1872, 1888, 1890, 1952, 2016, 2184, 2352, 2376, 2688, 3192, 3276, 3724, 3744, 4284, 4320, 4680, 5292, 5376, 5624
Offset: 1

Views

Author

Jaroslav Krizek, Jan 28 2012

Keywords

Comments

Complement of primes (A000040) with respect to A205523.

Examples

			24 is in the sequence because gcd(24; sigma(24)=60) = (sigma(24)=60) mod 24 = 12.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], ! PrimeQ[#] && Mod[GCD[#, DivisorSigma[1, #]] - DivisorSigma[1, #], #] == 0 &] (* T. D. Noe, Feb 03 2012 *)
  • PARI
    isok(k) = if (!isprime(k), my(s=sigma(k)); Mod(gcd(k, s), k) == Mod(s, k)); \\ Michel Marcus, Feb 09 2021

Extensions

Corrected by T. D. Noe, Feb 03 2012

A284082 Smallest positive m such that n divides sigma_m(n) - j where j is some divisor of n, or 0 if no such m exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 3, 2, 4, 1, 1, 1, 1, 0, 5, 1, 1, 2, 6, 3, 1, 1, 2, 1, 5, 0, 4, 2, 2, 1, 9, 0, 1, 1, 3, 1, 8, 5, 11, 1, 2, 2, 2, 8, 4, 1, 5, 0, 1, 0, 14, 1, 2, 1, 5, 0, 6, 2, 5, 1, 0, 7, 9, 1, 0, 1, 18, 10, 2, 0, 0, 1, 0, 4, 10, 1, 2, 8
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 19 2017

Keywords

Comments

If p is a prime, we have a(p) = 1. In general, if n = p^q with p prime, then a(n) <= q. For every prime power p^q < 10^13 it actually holds a(p^q) = q. Is this true for every prime power? - Giovanni Resta, Mar 20 2017
Yes, this is true: sigma[m](p^q) == 1/(1-p^m) (mod p^q); this is never divisible by p, and == 1 (mod p^q) iff m >= q. - Robert Israel, Apr 27 2017
First occurrence of k: 21, 1, 4, 8, 16, 22, 26, 69, 44, 38, 75, 46, 148, 316, 58, 186, ..., . - Robert G. Wilson v, Apr 14 2017

Crossrefs

Integers n such that n divides sigma_k(n) - i, where i is some divisor of n; A205523 (k = 1), A283970 (k = 2).
Cf. A033950.

Programs

  • Maple
    f:= proc(n) local m,mm,F,S,P,D,M0,M1;
          F:= ifactors(n)[2];
          if nops(F) = 1 then return F[1][2] fi;
          P:= map(t -> t[1]^t[2], F);
          S:= mul(add(t[1]^(i*m),i=0..t[2]),t=F);
          D:= subs(n=0,numtheory:-divisors(n));
          for mm from 1 to ilcm(op(map(numtheory:-phi, P)))+max(seq(t[2],t=F)) do
            if member(subs(m=mm,S) mod n, D) then return mm fi;
          od;
          0
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 27 2017
  • Mathematica
    a[n_] := Block[{ds, d=Divisors[n], m=0}, While[m <= 2*n, m++; ds = DivisorSigma[m, n]; If[ Select[d, Mod[ds-#, n] == 0 &, 1] != {}, Break[]]]; If[m > 2*n, 0, m]]; Array[a, 85] (* assuming that sigma(m,n) mod n has a period <= 2*n, Giovanni Resta, Mar 20 2017 *)

Extensions

a(56) from Giovanni Resta, Mar 20 2017

A283970 Integers m such that m divides sigma_2(m) - k where k is some divisor of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 17, 19, 23, 25, 29, 30, 31, 35, 36, 37, 40, 41, 43, 47, 48, 49, 50, 53, 59, 60, 61, 65, 67, 71, 73, 76, 79, 83, 89, 97, 101, 103, 107, 109, 113, 120, 121, 127, 130, 131, 132, 136, 137, 139, 140, 149, 150, 151, 157, 163, 167, 169, 173, 175, 179, 180
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 18 2017

Keywords

Examples

			2 is in this sequence because 2 divides A001157(2) - 1 = 5 - 1 = 4.
		

Crossrefs

Supersequence of A166684.
Cf. A001157 (sigma_2(n): sum of squares of divisors of n), A205523 (integers n such that n divides sigma_1(n) - i where i is some divisor of n), A284082.

Programs

  • Magma
    [[n: k in [1..n] | Denominator(n/k) eq 1 and
    Denominator(((DivisorSigma(2, n))-k)/n) eq 1]: n in [1..100]];
    
  • Mathematica
    Select[Range@ 180, Function[n, Total@ Boole@ Map[Divisible[ DivisorSigma[2, n] - #, n] &, Divisors@ n] > 0]] (* Michael De Vlieger, Mar 19 2017 *)
  • PARI
    isok(n) = fordiv(n, d, if (!((sigma(n, 2) - d) % n), return (1))); \\ Michel Marcus, Mar 18 2017
Showing 1-5 of 5 results.