cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A203847 a(n) = tau(n)*Fibonacci(n), where tau(n) = A000005(n), the number of divisors of n.

Original entry on oeis.org

1, 2, 4, 9, 10, 32, 26, 84, 102, 220, 178, 864, 466, 1508, 2440, 4935, 3194, 15504, 8362, 40590, 43784, 70844, 57314, 370944, 225075, 485572, 785672, 1906866, 1028458, 6656320, 2692538, 13069854, 14098312, 22811548, 36909860, 134373168, 48315634, 156352676, 252983944
Offset: 1

Views

Author

Paul D. Hanna, Jan 11 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} x^n/(1-x^n) = Sum_{n>=1} tau(n)*x^n.
Related identities:
(1) Sum_{n>=1} n^k*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_{k}(n)*Fibonacci(n)*x^n for k>=0.
(2) Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n.
(3) Sum_{n>=1} moebius(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = x.
(4) Sum_{n>=1} lambda(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Fibonacci(n^2)*x^(n^2).

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 9*x^4 + 10*x^5 + 32*x^6 + 26*x^7 +...
where A(x) = x/(1-x-x^2) + x^2/(1-3*x^2+x^4) + 2*x^3/(1-4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) + 5*x^5/(1-11*x^5-x^10) + 8*x^6/(1-18*x^6+x^12) +...+ Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {a(n)=sigma(n,0)*fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    
  • PARI
    a(n) = numdiv(n)*fibonacci(n); \\ Michel Marcus, Jul 18 2018

Formula

G.f.: Sum_{n>=1} Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} tau(n)*Fibonacci(n)*x^n, where Lucas(n) = A000204(n).

A205966 a(n) = Fibonacci(n)*A004016(n) for n>=1, with a(0)=1, where A004016(n) is the number of integer solutions (x,y) to x^2 + x*y + y^2 = n.

Original entry on oeis.org

1, 6, 0, 12, 18, 0, 0, 156, 0, 204, 0, 0, 864, 2796, 0, 0, 5922, 0, 0, 50172, 0, 131352, 0, 0, 0, 450150, 0, 1178508, 3813732, 0, 0, 16155228, 0, 0, 0, 0, 89582112, 289893804, 0, 758951832, 0, 0, 0, 5201933244, 0, 0, 0, 0, 28845161856, 140017356882, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2012

Keywords

Comments

Compare g.f. to the Lambert series of A004016: 1 + 6*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - x^n).

Examples

			G.f.: A(x) = 1 + 6*x + 12*x^3 + 18*x^4 + 156*x^7 + 204*x^9 + 864*x^12 +...
where A(x) = 1 + 1*6*x + 2*6*x^3 + 3*6*x^4 + 13*12*x^7 + 34*6*x^9 + 144*6*x^12 +...+ Fibonacci(n)*A004016(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 6*( 1*x/(1-x-x^2) - 1*x^2/(1-3*x^2+x^4) + 3*x^4/(1-7*x^4+x^8) - 5*x^5/(1-11*x^5-x^10) + 13*x^7/(1-29*x^7-x^14) - 21*x^8/(1-47*x^8-x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Cf. A209446 (Pell variant).

Programs

  • Mathematica
    A004016[n_] := SeriesCoefficient[(QPochhammer[q]^3 + 9 q QPochhammer[q^9]^3)/QPochhammer[q^3], {q, 0, n}]; Join[{1}, Table[Fibonacci[n]*b[n], {n,1,50}]] (* G. C. Greubel, Mar 05 2017 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 + 6*sum(m=1,n,kronecker(m,3)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 + 6*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).

A205968 a(n) = Fibonacci(n)*A008655(n) for n >= 1, with a(0)=1, where A008655 lists the coefficients in (theta_3(x)*theta_3(3*x) + theta_2(x)*theta_2(3*x))^4.

Original entry on oeis.org

1, 24, 216, 1776, 5256, 15120, 63936, 107328, 294840, 823344, 1496880, 2845152, 9334656, 12291216, 28012608, 68251680, 110883528, 188343792, 563167296, 688359840, 1493387280, 3343696512, 5095667232, 8368761024, 24087248640, 28361250600, 57633511824, 128471514096
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008655:
1 + Sum_{n>=1} 24*n^3*x^n/(1-x^n) + 8*(3*n)^3*x^(3*n)/(1-x^(3*n)).

Examples

			G.f.: A(x) = 1 + 24*x + 216*x^2 + 1776*x^3 + 5256*x^4 + 15120*x^5 + ...
where A(x) = 1 + 1*24*x + 1*216*x^2 + 2*888*x^3 + 3*1752*x^4 + 5*3024*x^5 + ... + Fibonacci(n)*A008655(n)*x^n + ...
		

Crossrefs

Cf. A209448 (Pell variant).

Programs

  • Mathematica
    A008655 := CoefficientList[Series[((EllipticTheta[3, 0, q]^3 + EllipticTheta[3, Pi/3, q]^3 + EllipticTheta[3, 2 Pi/3, q]^3)^4/(3* EllipticTheta[3, 0, q^3])^4), {q, 0, 250}], q]; b := Table[A008655[[n]], {n, 1, 120}][[1 ;; ;; 2]]; Join[{1}, Table[Fibonacci[n]*b[[n + 1]], {n, 1, 50}]] (* G. C. Greubel, Jul 16 2018 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 + sum(m=1,n, 24*fibonacci(m)*m^3*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n)) + 8*fibonacci(3*m)*(3*m)^3*x^(3*m)/(1-Lucas(3*m)*x^(3*m)+(-1)^m*x^(6*m) +x*O(x^n)) ),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 + Sum_{n>=1} 24*Fibonacci(n)*n^3*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) + 8*Fibonacci(3*n)*(3*n)^3*x^(3*n)/(1 - Lucas(3*n)*x^(3*n) + (-1)^n*x^(6*n)).

A205971 a(n) = Fibonacci(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.

Original entry on oeis.org

1, 4, 4, 8, 60, 120, 32, 416, 1092, 136, 1320, 4272, 2880, 13048, 12064, 14640, 114492, 114984, 10336, 334480, 811800, 350272, 850128, 2751072, 2411136, 9303100, 6798008, 785672, 50849760, 61707480, 19968960, 172322432, 531507396, 169179744, 410607864
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A034896:
1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 4*x + 4*x^2 + 8*x^3 + 60*x^4 + 120*x^5 + 32*x^6 + ...
where A(x) = 1 + 1*4*x + 1*4*x^2 + 2*4*x^3 + 3*20*x^4 + 5*24*x^5 + 8*4*x^6 + ... + Fibonacci(n)*A034896(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1+x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1+11*x^5-x^10) + 13*7*x^7/(1+29*x^7-x^14) + 21*8*x^8/(1-47*x^8+x^16) + ...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
		

Crossrefs

Cf. A209451 (Pell variant).

Programs

  • Mathematica
    A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n]*A034896[n], {n, 1, 50}]] (* G. C. Greubel, Dec 24 2017 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 + 4*sum(m=1,n,fibonacci(m)*kronecker(m,3)^2*m*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,61,print1(a(n),", "))

Formula

G.f.: 1 + 4*Sum_{n>=1} Fibonacci(n)*Chi(n,3)*n*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

A209447 a(n) = Pell(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.

Original entry on oeis.org

1, 12, 72, 60, 1008, 2088, 2520, 16224, 73440, 11820, 513648, 826704, 1164240, 5621448, 23265216, 14041800, 175149504, 245524824, 98791560, 1590026160, 8061191712, 3706940640, 40272058656, 64816900128, 97801149600, 487966581012, 1596075244848, 91744440540
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008653: 1 + 12*Sum_{n>=1} Chi(n,3)*n*x^n/(1-x^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 12*x + 72*x^2 + 60*x^3 + 1008*x^4 + 2088*x^5 + 2520*x^6 +...
where A(x) = 1 + 1*12*x + 2*36*x^2 + 5*12*x^3 + 12*84*x^4 + 29*72*x^5 + 70*36*x^6 +...+ Pell(n)*A008653(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 12*( 1*1*x/(1-2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1-82*x^5-x^10) + 169*7*x^7/(1-478*x^7-x^14) + 408*8*x^8/(1-1154*x^8-x^16)  +...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0, ...].
		

Crossrefs

Programs

  • Mathematica
    A008653[n_]:= If[n < 1, Boole[n == 0], 12*Sum[If[Mod[d, 3] > 0, d, 0], {d, Divisors@n}]]; Join[{1}, Table[Fibonacci[n, 2]*A008653[n], {n, 1, 1000}]] (* G. C. Greubel, Jan 02 2017 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + 12*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 12*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
Showing 1-5 of 5 results.