cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A203847 a(n) = tau(n)*Fibonacci(n), where tau(n) = A000005(n), the number of divisors of n.

Original entry on oeis.org

1, 2, 4, 9, 10, 32, 26, 84, 102, 220, 178, 864, 466, 1508, 2440, 4935, 3194, 15504, 8362, 40590, 43784, 70844, 57314, 370944, 225075, 485572, 785672, 1906866, 1028458, 6656320, 2692538, 13069854, 14098312, 22811548, 36909860, 134373168, 48315634, 156352676, 252983944
Offset: 1

Views

Author

Paul D. Hanna, Jan 11 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} x^n/(1-x^n) = Sum_{n>=1} tau(n)*x^n.
Related identities:
(1) Sum_{n>=1} n^k*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} sigma_{k}(n)*Fibonacci(n)*x^n for k>=0.
(2) Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n.
(3) Sum_{n>=1} moebius(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = x.
(4) Sum_{n>=1} lambda(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} Fibonacci(n^2)*x^(n^2).

Examples

			G.f.: A(x) = x + 2*x^2 + 4*x^3 + 9*x^4 + 10*x^5 + 32*x^6 + 26*x^7 +...
where A(x) = x/(1-x-x^2) + x^2/(1-3*x^2+x^4) + 2*x^3/(1-4*x^3-x^6) + 3*x^4/(1-7*x^4+x^8) + 5*x^5/(1-11*x^5-x^10) + 8*x^6/(1-18*x^6+x^12) +...+ Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, n]*Fibonacci[n], {n, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {a(n)=sigma(n,0)*fibonacci(n)}
    
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}
    
  • PARI
    a(n) = numdiv(n)*fibonacci(n); \\ Michel Marcus, Jul 18 2018

Formula

G.f.: Sum_{n>=1} Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} tau(n)*Fibonacci(n)*x^n, where Lucas(n) = A000204(n).

A205967 a(n) = Fibonacci(n)*A008653(n) for n>=1, with a(0)=1, where A008653 is the theta series of direct sum of 2 copies of hexagonal lattice.

Original entry on oeis.org

1, 12, 36, 24, 252, 360, 288, 1248, 3780, 408, 11880, 12816, 12096, 39144, 108576, 43920, 367164, 344952, 93024, 1003440, 3409560, 1050816, 7651152, 8253216, 8346240, 27909300, 61182072, 2357016, 213568992, 185122440, 179720640, 516967296, 1646801604, 507539232
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008653: 1 + 12*Sum_{n>=1} Chi(n,3)*n*x^n/(1-x^n).
Here Chi(n,3) = principal Dirichlet character of n modulo 3.

Examples

			G.f.: A(x) = 1 + 12*x + 36*x^2 + 24*x^3 + 252*x^4 + 360*x^5 + 288*x^6 +...
where A(x) = 1 + 1*12*x + 1*36*x^2 + 2*12*x^3 + 3*84*x^4 + 5*72*x^5 + 8*36*x^6 +...+ Fibonacci(n)*A008653(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 + 12*( 1*1*x/(1-x-x^2) + 1*2*x^2/(1-3*x^2+x^4) + 3*4*x^4/(1-7*x^4+x^8) + 5*5*x^5/(1-11*x^5-x^10) + 13*7*x^7/(1-29*x^7-x^14) + 21*8*x^8/(1-47*x^8-x^16)  +...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0, ...].
		

Crossrefs

Cf. A209447 (Pell variant).

Programs

  • Mathematica
    terms = 34; s = 1 + 12*Sum[Fibonacci[n]*KroneckerSymbol[n, 3]^2*n*(x^n/(1 - LucasL[n]*x^n + (-1)^n*x^(2*n))), {n, 1, terms}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 05 2017 *)
    b[n_] := If[n < 1, Boole[n == 0], 12 Sum[If[Mod[d, 3] > 0, d, 0], {d, Divisors@n}]]; Table[If[n == 0, 1, b[n]*Fibonacci[n]], {n, 0, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 + 12*sum(m=1,n,fibonacci(m)*kronecker(m,3)^2*m*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,50,print1(a(n),", "))

Formula

G.f.: 1 + 12*Sum_{n>=1} Fibonacci(n)*Chi(n,3)*n*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)).

A205969 a(n) = Fibonacci(n)*A113973(n) for n>=1, with a(0)=1, where A113973 lists the coefficients in phi(x^3)^3/phi(x) and phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 4, -4, 6, 0, 32, -52, 84, -68, 0, 0, 288, -932, 3016, 0, 1974, 0, 10336, -16724, 0, -43784, 0, 0, 185472, -150050, 971144, -392836, 1271244, 0, 0, -5385076, 8713236, 0, 0, 0, 29860704, -96631268, 312705352, -252983944, 0, 0, 2143314368, -1733977748, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 04 2012

Keywords

Comments

Compare g.f. to the Lambert series of A113973: 1 - 2*Sum_{n>=1} Kronecker(n,3)*x^n/(1 - (-x)^n).

Examples

			G.f.: A(x) = 1 - 2*x + 4*x^2 - 4*x^3 + 6*x^4 + 32*x^6 - 52*x^7 + 84*x^8 +...
where A(x) = 1 - 1*2*x + 1*4*x^2 - 2*2*x^3 + 3*2*x^4 + 8*4*x^6 - 13*4*x^7 + 21*4*x^8 +...+ Fibonacci(n)*A113973(n)*x^n +...
The g.f. is also given by the identity:
A(x) = 1 - 2*( 1*x/(1+x-x^2) - 1*x^2/(1-3*x^2+x^4) + 3*x^4/(1-7*x^4+x^8) - 5*x^5/(1+11*x^5-x^10) + 13*x^7/(1+29*x^7-x^14) - 21*x^8/(1-47*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
		

Crossrefs

Cf. A209449 (Pell variant).

Programs

  • Mathematica
    A113973:= CoefficientList[Series[EllipticTheta[3, q^3]^3/EllipticTheta[3, 0, q], {q, 0, 75}], q]; Table[If[n == 1, 1, Fibonacci[n-1]*A113973[[n]] ], {n, 1, 50}] (* G. C. Greubel, Jul 17 2018 *)
  • PARI
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(1 - 2*sum(m=1,n,fibonacci(m)*kronecker(m,3)*x^m/(1-Lucas(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: 1 - 2*Sum_{n>=1} Fibonacci(n)*Kronecker(n,3)*x^n/(1 - Lucas(n)*(-x)^n + (-1)^n*x^(2*n)).

A209448 a(n) = Pell(n)*A008655(n) for n>=1, with a(0)=1, where A008655 lists the coefficients in (theta_3(x)*theta_3(3*x)+theta_2(x)*theta_2(3*x))^4.

Original entry on oeis.org

1, 24, 432, 4440, 21024, 87696, 559440, 1395264, 5728320, 23852760, 64719648, 183528288, 898460640, 1765134672, 6002425728, 21820957200, 52895150208, 134056553904, 598084104240, 1090757945760, 3530801969856, 11795485116480, 26821191064896, 65724336729792
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2012

Keywords

Comments

Compare g.f. to the Lambert series of A008655:
1 + Sum_{n>=1} 24*n^3*x^n/(1-x^n) + 8*(3*n)^3*x^(3*n)/(1-x^(3*n)).

Examples

			G.f.: A(x) = 1 + 24*x + 432*x^2 + 4440*x^3 + 21024*x^4 + 87696*x^5 +...
where A(x) = 1 + 1*24*x + 2*216*x^2 + 5*888*x^3 + 12*1752*x^4 + 29*3024*x^5 +...+ Pell(n)*A008655(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    A008655[n_]:= SeriesCoefficient[((EllipticTheta[3, 0, q]^3 + EllipticTheta[3, Pi/3, q]^3 + EllipticTheta[3, 2 Pi/3, q]^3)^4/(3* EllipticTheta[3, 0, q^3])^4), {q, 0, n}]; b:= Table[A008655[n], {n, 0, 102}][[1 ;; ;; 2]]; Join[{1}, Table[Fibonacci[n, 2]*b[[n + 1]], {n, 1, 50}]] (* G. C. Greubel, Jan 26 2018 *)
  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {A002203(n)=Pell(n-1)+Pell(n+1)}
    {a(n)=polcoeff(1 + sum(m=1,n, 24*Pell(m)*m^3*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n)) + 8*Pell(3*m)*(3*m)^3*x^(3*m)/(1-A002203(3*m)*x^(3*m)+(-1)^m*x^(6*m) +x*O(x^n))  ),n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: 1 + Sum_{n>=1} 24*Pell(n)*n^3*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + 8*Pell(3*n)*(3*n)^3*x^(3*n)/(1 - A002203(3*n)*x^(3*n) + (-1)^n*x^(6*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
Showing 1-4 of 4 results.