A206028 a(n) is the sum of distinct values of sigma(d) where d runs over the divisors of n and sigma = A000203.
1, 4, 5, 11, 7, 20, 9, 26, 18, 28, 13, 55, 15, 36, 35, 57, 19, 72, 21, 77, 45, 52, 25, 130, 38, 60, 58, 99, 31, 140, 33, 120, 65, 76, 63, 198, 39, 84, 75, 182, 43, 180, 45, 143, 126, 100, 49, 285, 66, 152, 95, 165, 55, 232, 91, 234, 105, 124, 61, 385, 63, 132, 162, 247, 105, 248
Offset: 1
Keywords
Examples
For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Sum of k = 1+3+4+12 = 20. For n=66 -> divisors d of 66: 1,2,3,6,11,22,33,66; corresponding values of sigma(d): 1,3,4,12,12,36,48,144; a(66) = Sum of k = 1+3+4+12+36+48+144 = 248 (note that only one twelve is added.).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[Total[Union[DivisorSigma[1, Divisors[n]]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)
-
PARI
a(n)={vecsum(Set(apply(sigma, divisors(n))))} \\ Andrew Howroyd, Aug 01 2018
Formula
Extensions
Name clarified by David A. Corneth, Aug 01 2018
a(62)-a(66) from Andrew Howroyd, Aug 01 2018
Comments