A276978
a(n) = (ceiling(n/2))^n.
Original entry on oeis.org
1, 1, 8, 16, 243, 729, 16384, 65536, 1953125, 9765625, 362797056, 2176782336, 96889010407, 678223072849, 35184372088832, 281474976710656, 16677181699666569, 150094635296999121, 10000000000000000000, 100000000000000000000, 7400249944258160101211
Offset: 1
-
Table[Ceiling[n/2]^n, {n, 1, 21}]
-
a(n)= ceil(n/2)^n; \\ Michel Marcus, Oct 08 2016
A206345
Number of solvable clock puzzles with n positions in Final Fantasy XIII-2.
Original entry on oeis.org
0, 1, 1, 13, 32, 507, 1998, 33136, 193995, 3426518, 27187715, 501668052, 5124675822
Offset: 1
A solvable clock puzzle in the n = 6 case arises from the following integers (placed clockwise around a circle): 1, 3, 3, 2, 1, 3. If we label the positions 0, 1, 2, 3, 4, 5, then a solution to this puzzle is the following sequence of positions: 0, 1, 4, 3, 5, 2.
A206346
Number of solvable clock puzzles with n positions in Final Fantasy XIII-2, up to rotation and reflection.
Original entry on oeis.org
0, 1, 1, 4, 8, 58, 177, 2196, 11091, 172522, 1239350, 20916154, 197149146
Offset: 1
a(6)-a(9) corrected, a(10)-a(13) added by
Max Alekseyev, Jul 31 2025
A233203
a(n) = floor(n^n / 2^n).
Original entry on oeis.org
1, 0, 1, 3, 16, 97, 729, 6433, 65536, 756680, 9765625, 139312339, 2176782336, 36972058910, 678223072849, 13363461010158, 281474976710656, 6311342330065435, 150094635296999121, 3773536025353076151, 100000000000000000000, 2785962590401641140642, 81402749386839761113321
Offset: 0
a(5) = floor(5^5 / 2^5) = floor(3125 / 32) = 97.
Bisection gives:
A062206 (even part).
A276979
a(n) = (floor(n/2)+1)^n.
Original entry on oeis.org
1, 4, 8, 81, 243, 4096, 16384, 390625, 1953125, 60466176, 362797056, 13841287201, 96889010407, 4398046511104, 35184372088832, 1853020188851841, 16677181699666569, 1000000000000000000, 10000000000000000000, 672749994932560009201
Offset: 1
-
Table[(Floor[n/2] + 1)^n, {n, 1, 20}]
-
a(n) = (n\2 + 1)^n; \\ Michel Marcus, Oct 08 2016
Showing 1-5 of 5 results.
Comments