A206373 a(n) = (14*4^n + 1)/3.
5, 19, 75, 299, 1195, 4779, 19115, 76459, 305835, 1223339, 4893355, 19573419, 78293675, 313174699, 1252698795, 5010795179, 20043180715, 80172722859, 320690891435, 1282763565739, 5131054262955, 20524217051819, 82096868207275, 328387472829099, 1313549891316395
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Crossrefs
Programs
-
Magma
[(14*4^n+1)/3 : n in [0..30]];
-
Mathematica
(14*4^Range[0,30]+1)/3 (* or *) LinearRecurrence[{5,-4},{5,19},30] (* Harvey P. Dale, Jan 13 2023 *)
-
PARI
a(n)=(14*4^n + 1)/3 \\ Charles R Greathouse IV, Jun 01 2015
-
SageMath
[(7*2^(2*n+1)+1)/3 for n in range(31)] # G. C. Greubel, Jan 19 2023
Formula
a(n) = (14*4^n + 1)/3.
From Peter Bala, Oct 30 2013: (Start)
a(n+1) = 4*a(n) - 1 with a(0) = 5.
a(n) = 5*a(n-1) - 4*a(n-2) with a(0) = 5 and a(1) = 19.
O.g.f. (5 - 6*x)/((1 - x)*(1 - 4*x)). (End)
E.g.f.: (1/3)*(14*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023
Comments