cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A136412 a(n) = (5*4^n + 1)/3.

Original entry on oeis.org

2, 7, 27, 107, 427, 1707, 6827, 27307, 109227, 436907, 1747627, 6990507, 27962027, 111848107, 447392427, 1789569707, 7158278827, 28633115307, 114532461227, 458129844907, 1832519379627, 7330077518507, 29320310074027
Offset: 0

Views

Author

Paul Curtz, Mar 31 2008

Keywords

Comments

An Engel expansion of 4/5 to the base b := 4/3 as defined in A181565, with the associated series expansion 4/5 = b/2 + b^2/(2*7) + b^3/(2*7*27) + b^4/(2*7*27*107) + .... Cf. A199115 and A140660. - Peter Bala, Oct 29 2013

Crossrefs

Sequences of the form (m*4^n + 1)/3: A007583 (m=2), this sequence (m=5), A199210 (m=11), A199210 (m=11), A206373 (m=14).

Programs

Formula

a(n) = 4*a(n-1) - 1.
a(n) = A199115(n)/3.
O.g.f.: (2-3*x)/((1-x)*(1-4*x)). - R. J. Mathar, Apr 04 2008
a(n) = 5*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Nov 04 2011
E.g.f.: (1/3)*(5*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023

Extensions

Formula in definition and more terms from R. J. Mathar, Apr 04 2008

A199210 a(n) = (11*4^n + 1)/3.

Original entry on oeis.org

4, 15, 59, 235, 939, 3755, 15019, 60075, 240299, 961195, 3844779, 15379115, 61516459, 246065835, 984263339, 3937053355, 15748213419, 62992853675, 251971414699, 1007885658795, 4031542635179, 16126170540715, 64504682162859
Offset: 0

Views

Author

Vincenzo Librandi, Nov 04 2011

Keywords

Crossrefs

Sequences of the form (m*4^n + 1)/3: A007583 (m=2), A136412 (m=5), this sequence (m=11), A199210 (m=11), A206373 (m=14).

Programs

  • Magma
    [(11*4^n+1)/3: n in [0..30]];
    
  • Mathematica
    LinearRecurrence[{5,-4}, {4,15}, 31] (* G. C. Greubel, Jan 19 2023 *)
  • SageMath
    [(11*4^n+1)/3 for n in range(31)] # G. C. Greubel, Jan 19 2023

Formula

a(n) = 4*a(n-1) - 1.
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: (4-5*x)/((1-x)*(1-4*x)). - Bruno Berselli, Nov 04 2011
E.g.f.: (1/3)*(11*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023
Showing 1-2 of 2 results.