cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A136412 a(n) = (5*4^n + 1)/3.

Original entry on oeis.org

2, 7, 27, 107, 427, 1707, 6827, 27307, 109227, 436907, 1747627, 6990507, 27962027, 111848107, 447392427, 1789569707, 7158278827, 28633115307, 114532461227, 458129844907, 1832519379627, 7330077518507, 29320310074027
Offset: 0

Views

Author

Paul Curtz, Mar 31 2008

Keywords

Comments

An Engel expansion of 4/5 to the base b := 4/3 as defined in A181565, with the associated series expansion 4/5 = b/2 + b^2/(2*7) + b^3/(2*7*27) + b^4/(2*7*27*107) + .... Cf. A199115 and A140660. - Peter Bala, Oct 29 2013

Crossrefs

Sequences of the form (m*4^n + 1)/3: A007583 (m=2), this sequence (m=5), A199210 (m=11), A199210 (m=11), A206373 (m=14).

Programs

Formula

a(n) = 4*a(n-1) - 1.
a(n) = A199115(n)/3.
O.g.f.: (2-3*x)/((1-x)*(1-4*x)). - R. J. Mathar, Apr 04 2008
a(n) = 5*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Nov 04 2011
E.g.f.: (1/3)*(5*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023

Extensions

Formula in definition and more terms from R. J. Mathar, Apr 04 2008

A206373 a(n) = (14*4^n + 1)/3.

Original entry on oeis.org

5, 19, 75, 299, 1195, 4779, 19115, 76459, 305835, 1223339, 4893355, 19573419, 78293675, 313174699, 1252698795, 5010795179, 20043180715, 80172722859, 320690891435, 1282763565739, 5131054262955, 20524217051819, 82096868207275, 328387472829099, 1313549891316395
Offset: 0

Views

Author

Brad Clardy, Feb 07 2012

Keywords

Comments

A generalized Engel expansion of 2/7 to the base b := 4/3 as defined in A181565 with associated series expansion 2/7 = b/5 + b^2/(5*19) + b^3/(5*19*75) + b^4/(5*19*75*299) + .... - Peter Bala, Oct 30 2013

Crossrefs

Sequences of the form (m*4^n + 1)/3: A007583 (m=2), A136412 (m=5), A199210 (m=11), A199210 (m=11), this sequence (m=14).
Cf. A181565.

Programs

  • Magma
    [(14*4^n+1)/3 : n in [0..30]];
    
  • Mathematica
    (14*4^Range[0,30]+1)/3 (* or *) LinearRecurrence[{5,-4},{5,19},30] (* Harvey P. Dale, Jan 13 2023 *)
  • PARI
    a(n)=(14*4^n + 1)/3 \\ Charles R Greathouse IV, Jun 01 2015
    
  • SageMath
    [(7*2^(2*n+1)+1)/3 for n in range(31)] # G. C. Greubel, Jan 19 2023

Formula

a(n) = (14*4^n + 1)/3.
From Peter Bala, Oct 30 2013: (Start)
a(n+1) = 4*a(n) - 1 with a(0) = 5.
a(n) = 5*a(n-1) - 4*a(n-2) with a(0) = 5 and a(1) = 19.
O.g.f. (5 - 6*x)/((1 - x)*(1 - 4*x)). (End)
E.g.f.: (1/3)*(14*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023

A199211 a(n) = 11*4^n + 1.

Original entry on oeis.org

12, 45, 177, 705, 2817, 11265, 45057, 180225, 720897, 2883585, 11534337, 46137345, 184549377, 738197505, 2952790017, 11811160065, 47244640257, 188978561025, 755914244097, 3023656976385, 12094627905537, 48378511622145, 193514046488577, 774056185954305, 3096224743817217
Offset: 0

Views

Author

Vincenzo Librandi, Nov 04 2011

Keywords

Crossrefs

Cf. A199210.

Programs

  • Magma
    [11*4^n+1: n in [0..30]];
  • Mathematica
    11*4^Range[0,30]+1 (* or *) LinearRecurrence[{5,-4},{12,45},30] (* Harvey P. Dale, Oct 10 2012 *)

Formula

a(n) = 4*a(n-1) - 3.
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: 3*(4-5*x)/((1-x)*(1-4*x)). - Bruno Berselli, Nov 04 2011
From Elmo R. Oliveira, Mar 06 2025: (Start)
E.g.f.: exp(x)*(1 + 11*exp(3*x)).
a(n) = 3*A199210(n). (End)

A383953 a(0) = 4, a(n) = 2*a(n-1) + (-1)^n.

Original entry on oeis.org

4, 7, 15, 29, 59, 117, 235, 469, 939, 1877, 3755, 7509, 15019, 30037, 60075, 120149, 240299, 480597, 961195, 1922389, 3844779, 7689557, 15379115, 30758229, 61516459, 123032917, 246065835, 492131669, 984263339, 1968526677, 3937053355, 7874106709, 15748213419, 31496426837
Offset: 0

Views

Author

Paul Curtz, Aug 19 2025

Keywords

Crossrefs

Bisections give A199210 and A072261.

Programs

  • Mathematica
    a[n_] := (11*2^n + (-1)^n)/3; Array[a, 34, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

a(n) = (11*2^n + (-1)^n)/3.
a(n) = A340627(n+1)/2.
a(n) = 2*A052997(n) + 1 for n >= 1.
a(n) = a(n-4) + 55*2^(n-4) for n >= 4.
G.f.: (3*x + 4)/((x + 1)*(1 - 2*x)).
E.g.f: (11*exp(2*x) + exp(-x))/3.
Showing 1-4 of 4 results.