A136412 a(n) = (5*4^n + 1)/3.
2, 7, 27, 107, 427, 1707, 6827, 27307, 109227, 436907, 1747627, 6990507, 27962027, 111848107, 447392427, 1789569707, 7158278827, 28633115307, 114532461227, 458129844907, 1832519379627, 7330077518507, 29320310074027
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Crossrefs
Programs
-
Haskell
a136412 = (`div` 3) . (+ 1) . (* 5) . (4 ^) -- Reinhard Zumkeller, Jun 17 2012
-
Magma
[(5*4^n+1)/3: n in [0..30]]; // Vincenzo Librandi, Nov 04 2011
-
Mathematica
LinearRecurrence[{5,-4}, {2,7}, 31] (* G. C. Greubel, Jan 19 2023 *)
-
PARI
a(n)=(5*4^n+1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
SageMath
[(5*4^n+1)/3 for n in range(31)] # G. C. Greubel, Jan 19 2023
Formula
a(n) = 4*a(n-1) - 1.
a(n) = A199115(n)/3.
O.g.f.: (2-3*x)/((1-x)*(1-4*x)). - R. J. Mathar, Apr 04 2008
a(n) = 5*a(n-1) - 4*a(n-2). - Vincenzo Librandi, Nov 04 2011
E.g.f.: (1/3)*(5*exp(4*x) + exp(x)). - G. C. Greubel, Jan 19 2023
Extensions
Formula in definition and more terms from R. J. Mathar, Apr 04 2008
Comments