A206420 Fibonacci sequence beginning 11, 8.
11, 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, 1317, 2131, 3448, 5579, 9027, 14606, 23633, 38239, 61872, 100111, 161983, 262094, 424077, 686171, 1110248, 1796419, 2906667, 4703086, 7609753, 12312839, 19922592, 32235431, 52158023, 84393454, 136551477
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Cf. A000045.
Programs
-
Magma
I:=[11, 8]; [n le 2 select I[n] else Self(n-1)+ Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 18 2012
-
Mathematica
LinearRecurrence[{1, 1}, {11, 8}, 60]
-
PARI
Vec((11 - 3*x)/(1 - x - x^2) + O(x^30)) \\ Andrew Howroyd, Aug 28 2018
-
Python
def aupton(terms): alst = [11, 8] for n in range(3, terms+1): alst.append(alst[-1] + alst[-2]) return alst[:terms] print(aupton(36)) # Michael S. Branicky, Nov 08 2021
Formula
From Andrew Howroyd, Aug 28 2018: (Start)
a(n) = a(n-1) + a(n-2) for n > 2.
a(n) = 11*Fibonacci(n) - 3*Fibonacci(n-1).
G.f.: x*(11 - 3*x)/(1 - x - x^2). (End)