A230871
Construct a triangle as in the Comments, read nodes from left to right starting at the root and proceeding downwards.
Original entry on oeis.org
0, 1, 1, 3, 2, 2, 4, 8, 3, 5, 3, 5, 7, 9, 11, 21, 5, 7, 7, 13, 5, 7, 7, 13, 11, 17, 13, 23, 19, 25, 29, 55, 8, 12, 10, 18, 12, 16, 18, 34, 8, 12, 10, 18, 12, 16, 18, 34, 18, 26, 24, 44, 22, 30, 32, 60, 30, 46, 36, 64, 50, 66, 76, 144, 13, 19, 17, 31, 17, 23
Offset: 0
The successive rows are:
0
1
1, 3
2, 2, 4, 8
3, 5, 3, 5, 7, 9, 11, 21
5, 7, 7, 13, 5, 7, 7, 13, 11, 17, 13, 23, 19, 25, 29, 55
...
-
data Dtree = Dtree Dtree (Integer, Integer) Dtree
a230871 n k = a230871_tabf !! n !! k
a230871_row n = a230871_tabf !! n
a230871_tabf = [0] : map (map snd) (rows $ deleham (0, 1)) where
rows (Dtree left (x, y) right) =
[(x, y)] : zipWith (++) (rows left) (rows right)
deleham (x, y) = Dtree
(deleham (y, y + x)) (x, y) (deleham (y, 3 * y - x))
-- Reinhard Zumkeller, Nov 07 2013
-
T:= proc(n, k) T(n, k):= `if`(k=1 and n<2, n, (d->(1+2*d)*
T(n-1, r)+(1-2*d)*T(n-2, iquo(r+1, 2)))(irem(k+1, 2, 'r')))
end:
seq(seq(T(n, k), k=1..max(1, 2^(n-1))), n=0..7); # Alois P. Heinz, Nov 07 2013
-
T[n_, k_] := T[n, k] = If[k==1 && n<2, n, Function[d, r = Quotient[k+1, 2]; (1+2d) T[n-1, r] + (1-2d) T[n-2, Quotient[r+1, 2]]][Mod[k+1, 2]]];
Table[T[n, k], {n, 0, 7}, {k, 1, Max[1, 2^(n-1)]}] // Flatten (* Jean-François Alcover, Apr 11 2017, after Alois P. Heinz *)
A354265
Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2.
Original entry on oeis.org
2, 3, 1, 4, 4, 3, 5, 7, 7, 4, 6, 10, 11, 11, 7, 7, 13, 15, 18, 18, 11, 8, 16, 19, 25, 29, 29, 18, 9, 19, 23, 32, 40, 47, 47, 29, 10, 22, 27, 39, 51, 65, 76, 76, 47, 11, 25, 31, 46, 62, 83, 105, 123, 123, 76, 12, 28, 35, 53, 73, 101, 134, 170, 199, 199, 123
Offset: 0
Array starts:
[0] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032
[1] 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ... A000032 (shifted)
[2] 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ... A000032 (shifted)
[3] 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, ... A022088
[4] 6, 13, 19, 32, 51, 83, 134, 217, 351, 568, ... A022388
[5] 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, ... A190995
[6] 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, ... A206420
[7] 9, 22, 31, 53, 84, 137, 221, 358, 579, 937, ... A206609
[8] 10, 25, 35, 60, 95, 155, 250, 405, 655, 1060, ...
[9] 11, 28, 39, 67, 106, 173, 279, 452, 731, 1183, ...
-
const FibMem = Dict{Int,Tuple{BigInt,BigInt}}()
function FibRec(n::Int)
get!(FibMem, n) do
n == 0 && return (BigInt(0), BigInt(1))
a, b = FibRec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
end
function Lucas(n, k)
k == 0 && return BigInt(n + 2)
k == -1 && return BigInt(2 * n - 1)
k < 0 && return (-1)^k * Lucas(1 - n, -k - 2)
a, b = FibRec(k)
c, d = FibRec(k - 1)
n * (2 * a + b) + 2 * c + d
end
for n in -6:6
println([Lucas(n, k) for k in -6:6])
end
-
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
L := (n, k) -> phi^(k+1)*(n - psi) + psi^(k+1)*(n - phi):
seq(seq(simplify(L(n-k, k)), k = 0..n), n = 0..10);
-
L[n_, k_] := With[{c = Pi/2 + I*ArcCsch[2]},
I^k Sec[c] (n Cos[c (k + 1)] - I Cos[c k]) ];
Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
(* Alternative: *)
L[n_, k_] := n*LucasL[k + 1] + LucasL[k];
Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
A347351
Triangle read by rows: T(n,k) is the number of links of length k in a set of all necklaces A000358 of length n, 1 <= k <= n.
Original entry on oeis.org
1, 2, 1, 3, 0, 1, 4, 2, 0, 1, 5, 1, 1, 0, 1, 6, 4, 2, 1, 0, 1, 7, 3, 2, 1, 1, 0, 1, 8, 8, 3, 3, 1, 1, 0, 1, 9, 8, 7, 3, 2, 1, 1, 0, 1, 10, 18, 9, 5, 4, 2, 1, 1, 0, 1, 11, 21, 13, 8, 5, 3, 2, 1, 1, 0, 1, 12, 40, 24, 16, 8, 6, 3, 2, 1, 1, 0, 1, 13, 55, 34, 21, 13, 8, 5, 3, 2, 1, 1, 0, 1
Offset: 0
For k > 0:
n\k | 1 2 3 4 5 6 7 8 9 10 ...
-----+---------------------------------------
1 | 1
2 | 2 1
3 | 3 0 1
4 | 4 2 0 1
5 | 5 1 1 0 1
6 | 6 4 2 1 0 1
7 | 7 3 2 1 1 0 1
8 | 8 8 3 3 1 1 0 1
9 | 9 8 7 3 2 1 1 0 1
10 | 10 18 9 5 4 2 1 1 0 1
...
If we continue the calculation for nonpositive k, we get a table in which each row is a Fibonacci sequence, in which term(0) = A113166, term(1) = A034748.
For k <= 0:
n\k | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 ...
-----+------------------------------------------------
1 | 0 1 1 2 3 5 8 13 21 34 ... A000045
2 | 1 2 3 5 8 13 21 34 55 89 ... A000045
3 | 1 4 5 9 14 23 37 60 97 157 ... A000285
4 | 3 6 9 15 24 39 63 102 165 267 ... A022086
5 | 3 9 12 21 33 54 87 141 228 369 ... A022379
6 | 8 14 22 36 58 94 152 246 398 644 ... A022112
7 | 8 19 27 46 73 119 192 311 503 814 ... A206420
8 | 17 30 47 77 124 201 325 526 851 1377 ... A022132
9 | 23 44 67 111 178 289 467 756 1223 1979 ... A294116
10 | 41 68 109 177 286 463 749 1212 1961 3173 ... A022103
...
-
function [res] = calcLinks(n,k)
if k==1
res=n;
else
d=divisors(n);
res=0;
for i=1:length(d)
if d (i) >= k
res=res+eulerPhi(n/d(i))*fiboExt(d(i)-k-1);
end
end
end
function [s] = fiboExt(m) % extended fibonacci function (including negative arguments)
m=sym(m); % for large fibonacci numbers
if m>=0 || mod(m,2)==1
s=fibonacci(abs(m));
else
s=fibonacci(abs(m))*(-1);
end
-
T(n, k) = if (k==1, n, sumdiv(n, d, if (d>=k, eulerphi(n/d)*fibonacci(d-k-1)))); \\ Michel Marcus, Aug 29 2021
Showing 1-3 of 3 results.
Comments