cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A206435 Total sum of odd parts in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 5, 3, 13, 13, 29, 29, 66, 70, 126, 146, 241, 287, 450, 526, 791, 963, 1360, 1660, 2312, 2810, 3799, 4649, 6158, 7528, 9824, 11962, 15393, 18773, 23804, 28932, 36413, 44093, 54953, 66419, 82085, 98929, 121469, 145865, 177983, 213241, 258585, 308861
Offset: 1

Views

Author

Omar E. Pol, Feb 12 2012

Keywords

Comments

From Omar E. Pol, Apr 09 2023: (Start)
Convolution of A002865 and A000593.
a(n) is also the total sum of odd divisors of the terms in the n-th row of the triangle A336811.
a(n) is also the sum of odd terms in the n-th row of the triangle A207378.
a(n) is also the sum of odd terms in the n-th row of the triangle A336812. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
             [g[1]+h[1], g[2]+h[2] +(i mod 2)*h[1]*i]
          fi
        end:
    a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 16 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i > n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)

Formula

G.f.: (Sum_{i>=0} (2*i+1)*x^(2*i)*(1-x)/(1-x^(2*i+1))) / Product_{j>0} (1-x^j). - Alois P. Heinz, Mar 16 2012
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Alois P. Heinz, Mar 16 2012

A206436 Total sum of even parts in the last section of the set of partitions of n.

Original entry on oeis.org

0, 2, 0, 8, 2, 18, 10, 42, 28, 80, 70, 162, 148, 290, 300, 530, 562, 918, 1020, 1570, 1780, 2602, 3022, 4286, 4992, 6858, 8110, 10872, 12888, 16962, 20178, 26134, 31138, 39728, 47412, 59848, 71312, 89072, 106176, 131440, 156400, 192164, 228330, 278616, 330502
Offset: 1

Views

Author

Omar E. Pol, Feb 12 2012

Keywords

Comments

Also total sum of even parts in the partitions of n that do not contain 1 as a part.
From Omar E. Pol, Apr 09 2023: (Start)
Convolution of A002865 and A146076.
a(n) is also the total sum of even divisors of the terms in the n-th row of the triangle A336811.
a(n) is also the sum of even terms in the n-th row of the triangle A207378.
a(n) is also the sum of even terms in the n-th row of the triangle A336812. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
             [g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i]
          fi
        end:
    a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 16 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)

Formula

G.f.: (Sum_{i>0} 2*i*x^(2*i)*(1-x)/(1-x^(2*i))) / Product_{i>0} (1-x^i). - Alois P. Heinz, Mar 16 2012
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Alois P. Heinz, Mar 16 2012

A206433 Total number of odd parts in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 7, 9, 15, 19, 32, 40, 60, 78, 111, 143, 200, 252, 343, 437, 576, 728, 952, 1190, 1531, 1911, 2426, 3008, 3788, 4664, 5819, 7143, 8830, 10780, 13255, 16095, 19661, 23787, 28881, 34795, 42051, 50445, 60675, 72547, 86859, 103481, 123442, 146548
Offset: 1

Views

Author

Omar E. Pol, Feb 12 2012

Keywords

Comments

From Omar E. Pol, Apr 07 2023: (Start)
Convolution of A002865 and A001227.
a(n) is also the total number of odd divisors of the terms in the n-th row of the triangle A336811.
a(n) is also the number of odd terms in the n-th row of the triangle A207378.
a(n) is also the number of odd terms in the n-th row of the triangle A336812. (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+ (i mod 2)*g[1]]
          fi
        end:
    a:= n-> b(n, n)[2] -b(n-1, n-1)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If[n==0 || i==1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; {f[[1]]+g[[1]], f[[2]]+g[[2]] + Mod[i, 2]*g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 16 2017, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Mar 22 2012
Showing 1-3 of 3 results.