cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206622 G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^2).

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1148, 3376, 9654, 26894, 73192, 195188, 510948, 1315048, 3332720, 8326448, 20529526, 49998884, 120379574, 286726340, 676057144, 1578880480, 3654180236, 8385122192, 19085029540, 43103203626, 96630606968, 215105226728, 475608824400
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2012

Keywords

Comments

Compare g.f. to: Product_{n>0} (1+x^n)/(1-x^n) = exp( Sum_{n>=1} (sigma(2*n) - sigma(n))*x^n/n ) which equals 1/theta_4(x) = 1/(1 + 2*Sum_{n>=1} (-x)^(n^2)).
Convolution of A023871 and A027998. - Vaclav Kotesovec, Aug 19 2015
In general, if g.f. = Product_{k>=1} ((1 + x^k)/(1 - x^k))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi * 2^(5/4) * c2^(1/4) * n^(3/4) / 3 + 7*c1 * Zeta(3) * sqrt(n) / (Pi^2 * sqrt(2*c2)) + (c0*Pi / (2^(5/4) * c2^(1/4)) - 49*c1^2 * Zeta(3)^2 / (2^(5/4) * c2^(5/4) * Pi^5)) * n^(1/4) + 22411 * c1^3 * Zeta(3)^3 / (196 * c2^2 * Pi^8) - 7*c0*c1 * Zeta(3) / (4*c2 * Pi^2) - c2 * Zeta(3) / (4*Pi^2) + c1/12) * Pi^(c1/12) * c2^(1/8 + c0/8 + c1/48) / (A^c1 * 2^(15/8 + 11*c0/8 + 7*c1/48) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017
Let A(x) denote the g.f. and let m be an integer. Define a sequence by u(n) = [x^n] A(x)^(m*n). We conjecture that the supercongruence u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) holds for all positive integers n and r and all primes p >= 5. Cf. A380582. - Peter Bala, Jan 21 2025

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 36*x^3 + 118*x^4 + 376*x^5 + 1148*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^4/(1-x^2)^4 * (1+x^3)^9/(1-x^3)^9 *...
Also, A(x) = Euler transform of [2,7,18,28,50,63,98,112,162,175,...]:
A(x) = 1/((1-x)^2*(1-x^2)^7*(1-x^3)^18*(1-x^4)^28*(1-x^5)^50*(1-x^6)^63*...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    {a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^2)),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 3)-sigma(m, 3))/4*x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=local(InvEulerGF=x*(2+7*x+12*x^2+7*x^3+2*x^4)/(1-x^2+x*O(x^n))^3);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} (sigma_3(2*n) - sigma_3(n))/4 * x^n/n ), where sigma_3(n) is the sum of cubes of divisors of n (A001158).
The inverse Euler transform has g.f.: x*(2 + 7*x + 12*x^2 + 7*x^3 + 2*x^4)/(1-x^2)^3.
a(n) ~ exp(2^(5/4)*Pi*n^(3/4)/3 - Zeta(3)/(4*Pi^2)) / (2^(15/8) * n^(5/8)), where Zeta(3) = A002117. - Vaclav Kotesovec, Aug 19 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A007331(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017