A380582 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} ((1 + x^k)/(1 - x^k))^(k^2) is the g.f. of A206622.
1, 2, 24, 236, 2432, 25752, 277152, 3019088, 33186816, 367378814, 4089875024, 45741207228, 513537853952, 5784253405192, 65332622356032, 739706089046736, 8392732289277952, 95401363286044260, 1086232605119042424, 12386037358495697292, 141422619808922418432, 1616691574828234720352
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 3019088 - 2 = 2*(3^3)*(7^3)*163 == 0 (mod 7^3) a(13) - a(1) = 5784253405192 - 2 = 2*5*(13^4)*20252279 == 0 (mod 13^4) a(2*11) - a(2) = 18501616629347623668448 - 24 = (2^3)*(11^3)*17*1951*4243*9817*1257719 == 0 (mod 11^3) a(5^2) - a(5) = 1884578634304981694792832319004 - 256504 = (2^2)*(5^6)*193381* 155926684363405438573 == 0 (mod 5^6)
Programs
-
Maple
with(numtheory): G(x) := series(exp(add( (1/4)*(sigma[3](2*k) - sigma[3](k))*x^k/k, k = 1..23 )),x,24): seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
Formula
a(n) = [x^n] exp( n*Sum_{k >= 1} (sigma_3(2*k) - sigma_3(k))/4 * x^k/k ).
Comments