A156616
G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n.
Original entry on oeis.org
1, 2, 6, 16, 38, 88, 196, 420, 878, 1794, 3584, 7032, 13572, 25792, 48352, 89512, 163774, 296444, 531234, 943072, 1659560, 2896376, 5015700, 8622108, 14718652, 24960138, 42062200, 70458160, 117349856, 194381704, 320295312, 525123604
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)
- Ali H. Al-Saedi, Congruences for restricted plane overpartitions modulo 4 and 8, Raman. J. 48 (2) (2019) 251
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 18.
- Mirjana Vuletic, A generalization of MacMahon's formula, Trans. Am. Math. Soc. 361 (2009) 2789-2804.
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
-
{a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m,2)-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, May 01 2010
A206622
G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^2).
Original entry on oeis.org
1, 2, 10, 36, 118, 376, 1148, 3376, 9654, 26894, 73192, 195188, 510948, 1315048, 3332720, 8326448, 20529526, 49998884, 120379574, 286726340, 676057144, 1578880480, 3654180236, 8385122192, 19085029540, 43103203626, 96630606968, 215105226728, 475608824400
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 36*x^3 + 118*x^4 + 376*x^5 + 1148*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^4/(1-x^2)^4 * (1+x^3)^9/(1-x^3)^9 *...
Also, A(x) = Euler transform of [2,7,18,28,50,63,98,112,162,175,...]:
A(x) = 1/((1-x)^2*(1-x^2)^7*(1-x^3)^18*(1-x^4)^28*(1-x^5)^50*(1-x^6)^63*...).
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
-
{a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^2)),n)}
-
{a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 3)-sigma(m, 3))/4*x^m/m)+x*O(x^n)), n)}
-
{a(n)=local(InvEulerGF=x*(2+7*x+12*x^2+7*x^3+2*x^4)/(1-x^2+x*O(x^n))^3);polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
for(n=0,35,print1(a(n),", "))
A206624
G.f.: Product_{n>0} ( (1+x^n)/(1-x^n) )^(n^4).
Original entry on oeis.org
1, 2, 34, 228, 1414, 8872, 52876, 301136, 1662614, 8929406, 46738920, 239036116, 1197187780, 5882369976, 28397283056, 134864166352, 630819797174, 2908948327780, 13236421303742, 59477002686404, 264104800719672, 1159649708139680, 5037895127964316
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 88*x^3 + 398*x^4 + 1768*x^5 + 7508*x^6 +...
where A(x) = (1+x)/(1-x) * (1+x^2)^16/(1-x^2)^16 * (1+x^3)^81/(1-x^3)^81 *...
Also, A(x) = Euler transform of [2,31,162,496,1250,2511,4802,7936,...]:
A(x) = 1/((1-x)^2*(1-x^2)^31*(1-x^3)^162*(1-x^4)^496*(1-x^5)^1250*(1-x^6)^2511*...).
-
nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k^4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
-
{a(n)=polcoeff(prod(m=1,n+1,((1+x^m)/(1-x^m+x*O(x^n)))^(m^4)),n)}
-
{a(n)=polcoeff(exp(sum(m=1, n, (sigma(2*m, 5)-sigma(m, 5))/16*x^m/m)+x*O(x^n)), n)}
-
{a(n)=local(InvEulerGF=x*(2+31*x+152*x^2+341*x^3+460*x^4+341*x^5+152*x^6+31*x^7+2*x^8)/(1-x^2+x*O(x^n))^5); polcoeff(1/prod(k=1,n,(1-x^k+x*O(x^n))^polcoeff(InvEulerGF,k)),n)}
for(n=0,30,print1(a(n),", "))
A285989
a(0) = 0, a(n) = Sum_{0 0.
Original entry on oeis.org
0, 1, 16, 82, 256, 626, 1312, 2402, 4096, 6643, 10016, 14642, 20992, 28562, 38432, 51332, 65536, 83522, 106288, 130322, 160256, 196964, 234272, 279842, 335872, 391251, 456992, 538084, 614912, 707282, 821312, 923522, 1048576, 1200644, 1336352, 1503652, 1700608
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..10000
- J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
- Index entries for sequences mentioned by Glaisher.
-
f:= n -> add((n/d)^4, d = numtheory:-divisors(n/2^padic:-ordp(n,2))); # Robert Israel, Apr 30 2017
-
{0}~Join~Table[DivisorSum[n, Mod[#, 2] (n/#)^4 &], {n, 36}] (* Michael De Vlieger, Aug 05 2018 *)
-
a(n)={sumdiv(n, d, (d%2)*(n/d)^4)} \\ Andrew Howroyd, Aug 05 2018
A285990
Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^(n^3) in powers of x.
Original entry on oeis.org
1, -2, -14, -24, 78, 536, 1236, -308, -12322, -45218, -73680, 76144, 872868, 2833904, 4612952, -2467592, -42205746, -147191388, -285572658, -127256088, 1376616024, 6138841704, 14949184532, 19201535108, -18287313476, -186761626394, -604980766280
Offset: 0
A302237
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k+1)/2).
Original entry on oeis.org
1, 2, 8, 26, 76, 216, 590, 1554, 3988, 9988, 24464, 58794, 138866, 322808, 739658, 1672372, 3734848, 8245956, 18012114, 38952586, 83448832, 177194716, 373111970, 779430870, 1615995262, 3326484686, 6800794428, 13813260736, 27881653590, 55942340000, 111601021856
Offset: 0
Cf.
A000217,
A000294,
A015128,
A028377,
A156616,
A206622,
A206623,
A206624,
A260916,
A261386,
A261452,
A261519,
A261520,
A301554,
A301555.
-
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
A302238
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^prime(k).
Original entry on oeis.org
1, 4, 14, 46, 136, 382, 1022, 2626, 6530, 15784, 37218, 85842, 194146, 431358, 943038, 2031454, 4316884, 9058662, 18787730, 38542526, 78264298, 157403290, 313712482, 619919350, 1215125262, 2363570168, 4563951858, 8751621598, 16670498062, 31553539214, 59361428202
Offset: 0
Cf.
A000040,
A015128,
A030009,
A061152,
A156616,
A206622,
A206623,
A206624,
A260916,
A261386,
A261452,
A261519,
A261520,
A301554,
A301555.
-
nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^Prime[k], {k, 1, nmax}], {x, 0, nmax}], x]
A302239
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^p(k), where p(k) = number of partitions of k (A000041).
Original entry on oeis.org
1, 2, 6, 16, 40, 96, 226, 512, 1140, 2488, 5336, 11270, 23494, 48356, 98438, 198338, 395846, 783136, 1536800, 2992818, 5786952, 11114950, 21213906, 40247696, 75928804, 142475644, 265985628, 494155176, 913802164, 1682338192, 3084101744, 5630853218, 10240484332, 18553818210
Offset: 0
Cf.
A000041,
A001970,
A015128,
A156616,
A206622,
A206623,
A206624,
A260916,
A261049,
A261386,
A261452,
A261519,
A261520,
A301554,
A301555,
A302237,
A302238.
-
nmax = 33; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]
A304461
Coefficient of x^n in Product_{k>=1} ((1+x^k)/(1-x^k))^(n^3).
Original entry on oeis.org
1, 2, 144, 29232, 12263552, 8807437800, 9671073636672, 15075101792958592, 31660212257148109824, 86182291753025176234602, 295133367252867736074882400, 1241742977667269060006125955952, 6296492342467004634980003629748736, 37869525230334631809014462278624137096
Offset: 0
-
nmax = 20; Table[SeriesCoefficient[Product[((1+x^k)/(1-x^k))^(n^3), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2/QPochhammer[x])^(n^3), {x, 0, n}], {n, 0, nmax}]
A321389
Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k^k).
Original entry on oeis.org
1, 2, 10, 72, 670, 7896, 113532, 1938948, 38463150, 869969602, 22098936536, 622728174288, 19271479902324, 649553475002720, 23680210649058960, 928276725059295192, 38931910620358040382, 1739307894106738293052, 82457731356894087128054, 4134332188240252347401752, 218571692793801915329820184
Offset: 0
-
a:=series(mul(((1+x^k)/(1-x^k))^(k^k),k=1..100),x=0,21): seq(coeff(a,x,n),n=0..20); # Paolo P. Lava, Apr 02 2019
-
nmax = 20; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k^k), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[((-1)^(k/d + 1) + 1) d^(d + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 20}]
-
seq(n)={Vec(exp(sum(k=1, n, sumdiv(k,d, ((-1)^(k/d+1) + 1)*d^(d+1) ) * x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Nov 09 2018
Showing 1-10 of 10 results.
Comments