cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206708 Numbers k such that sigma(k) = sigma(sigma(k)-k).

Original entry on oeis.org

6, 28, 220, 284, 496, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 8128, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750, 87633, 88730, 100485, 122265, 122368, 123152, 124155, 139815, 141664, 142310, 153176
Offset: 1

Views

Author

Michel Lagneau, Feb 11 2012

Keywords

Comments

For all k, let s(k) = sigma(k) - k, the aliquot sum function A001065; then this sequence is the set of k such that s(s(k)) = k. - Jeppe Stig Nielsen, Jan 12 2020

Examples

			220 is in the sequence because sigma(220) = 504, sigma(504 - 220) = sigma(284) = 504.
		

Crossrefs

Cf. A000396 (perfect numbers), A063990 (amicable numbers).
Cf. A000203 (sum of divisors), A001065 (sum of proper divisors).

Programs

  • Magma
    [k:k in [2..154000]|s eq DivisorSigma(1,s-k) where s is DivisorSigma(1,k)]; // Marius A. Burtea, Jan 13 2020
  • Maple
    q:= n-> (s-> s(n)=s(s(n)-n))(numtheory[sigma]):
    select(q, [$1..100000])[];  # Alois P. Heinz, Jan 31 2023
  • Mathematica
    Select[Range[10^6],DivisorSigma[1,#]==DivisorSigma[1, DivisorSigma[1,#]-#]&]
  • PARI
    isok(k) = if (k != 1, my(sk=sigma(k)); sk == sigma(sk-k)); \\ Michel Marcus, Jun 24 2019
    

Formula

Equals {A063990} union {A000396} = (amicable numbers) union (perfect numbers).