A207778 Smallest multiple of 2^n using only 1's and 2's.
1, 2, 12, 112, 112, 2112, 2112, 122112, 122112, 12122112, 12122112, 12122112, 111212122112, 1111212122112, 11111212122112, 11111212122112, 11111212122112, 11111212122112, 111211111212122112, 111211111212122112, 111211111212122112, 111211111212122112
Offset: 0
References
- J. B. Tabov and P. J. Taylor, Methods of Problem Solving, Book 1, Australian Mathematics Trust, 1996.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- Vladimir A. Pertsel, Problems of the All-Soviet-Union Mathematical Competitions 1961-1986, the 5th competition, Riga, 1971, problem 144.
- Index to sequences related to Olympiads and other Mathematical competitions.
Programs
-
Mathematica
Table[m = 1; p = 2^k; While[Total@ DigitCount[m p][[3 ;; -1]] > 0, m++]; m p, {k, 0, 11}] (* Michael De Vlieger, Mar 17 2023 *)
-
PARI
a(n) = my(k=1, d=digits(k*2^n)); while (!((vecmin(d)>=1) && (vecmax(d)<=2)), k++; d=digits(k*2^n)); k*2^n; \\ Michel Marcus, Mar 15 2023
Formula
a(n) <= A053312(n).
Extensions
More terms from Alois P. Heinz, Feb 20 2012
Comments