cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207833 E.g.f.: T(T(x)), where T(x) is the e.g.f. for labeled rooted trees, A000169.

Original entry on oeis.org

1, 4, 30, 332, 4880, 89742, 1986124, 51471800, 1530489744, 51395228090, 1924687118684, 79553145323940, 3598161485778808, 176797212122233094, 9378715234039802340, 534259395682874552048, 32528761111972930621472, 2108146039402630977388530, 144899759883703796130871468, 10528261771566724089621962780
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2012

Keywords

Comments

Exponential series reversal gives A185298 with alternating signs: 1, -4, 18, -92, 520, ... . - Vladimir Reshetnikov, Aug 04 2019

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 30*x^3/3! + 332*x^4/4! + 4880*x^5/5! +...
Euler's tree function T(x) satisfies: T(x/exp(x)) = x, and begins:
T(x) = x + 2*x^2/2! + 3^2*x^3/3! + 4^3*x^4/4! + 5^4*x^5/5! +...+ A000169(n)*x^n/n! +...
where e.g.f. A(x) = T(T(x)).
		

Crossrefs

Programs

  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[ 0,nn]!CoefficientList[ ComposeSeries[ Series[t,{x,0,nn}],Series[t,{x,0,nn}]],x] (* Geoffrey Critzer, Sep 16 2012 *)
    Rest[CoefficientList[Series[-LambertW[LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Feb 24 2014 *)
  • PARI
    {a(n)=if(n==0||n==1, 1, n^(n-1)-sum(k=1, n-1, (-1)^(n-k)*binomial(n, k)*k^(n-k)*a(k)))} \\ Paul D. Hanna, Nov 21 2012

Formula

a(n) = 1/n * Sum_{k=1..n} C(n,k)*k^k*n^(n-k). [Vladimir Kruchinin, Sep 24 2012]
a(n) = n^(n-1) - Sum_{k=1..n-1} (-1)^(n-k) * C(n, k) * k^(n-k) * a(k) for n>1 with a(1)=1. - Paul D. Hanna, Nov 21 2012
E.g.f. A(x) satisfies: A(x) = Sum_{n>=1} n^(n-1)*T(x)^n/n!, by definition.
E.g.f. A(x) satisfies: A(x/exp(x)) = T(x) = Sum_{n>=1} n^(n-1)*x^n/n!. - Paul D. Hanna, Jul 04 2013
a(n) ~ n^(n-1) * exp(n*exp(-1)) / sqrt(1-exp(-1)). - Vaclav Kotesovec, Feb 24 2014