A207978 Number of n X 2 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any diagonal or antidiagonal neighbor (colorings ignoring permutations of colors).
1, 2, 7, 67, 1080, 25287, 794545, 31858034, 1573857867, 93345011951, 6514819011216, 526593974392123, 48658721593531669, 5084549201524804642, 595348294459678745663, 77500341343460209843627, 11140107960738185817545800, 1757660562895916320583653791
Offset: 0
Keywords
Examples
Some solutions for n=4: ..0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0....0..0....0..1 ..1..1....1..1....1..1....1..1....1..1....1..1....0..1....1..1....1..1....2..1 ..2..3....2..0....2..0....2..2....0..2....0..0....0..1....0..2....0..2....0..1 ..2..0....3..3....1..0....3..4....3..1....1..1....0..1....3..4....0..1....0..1 The set partitions of 4 where at most {1} and {2} are the only sets of size 1 are {1234}, {1|234}, {2|134}, {12|34}, {13|24}, {14|23}, {1|2|34} - _Mike Zabrocki_, May 23 2023
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..288 (terms n = 1..40 from R. H. Hardin)
- Rosa Orellana, Nancy Wallace, and Mike Zabrocki, Representations of the quasi-partition algebras, arXiv:2306.17326 [math.RT], 2023.
Programs
-
Maple
a:=n->add((-1)^s*binomial(2*n-2, s) * combinat[bell](2*n-s), s = 0 .. 2*n); # Mike Zabrocki, May 23 2023 # second Maple program: b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1), j=1..n)) end: a:= n-> `if`(n=0, 1, b(2*n-1)+b(2*n-2)): seq(a(n), n=0..19); # Alois P. Heinz, May 30 2023
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]]; a[n_] := If[n == 0, 1, b[2n-1] + b[2n-2]]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 17 2024, after Alois P. Heinz *)
-
Sage
a = lambda n: sum((-1)**s*binomial(2*n-2,s)*bell_number(2*n-s) for s in range(2*n-2+1)) # Mike Zabrocki, May 23 2023
Formula
a(n) = Sum_{s=0..2n} (-1)^s binomial(2n-2,s) Bell(2n-s). - Mike Zabrocki, May 23 2023
a(n) = A011968(2*n-1) for n>=1. - Alois P. Heinz, May 30 2023
Extensions
New description and a formula added by Mike Zabrocki, May 23 2023
a(0)=1 prepended by Alois P. Heinz, May 30 2023
Comments