A208341 Triangle read by rows, T(n,k) = hypergeometric_2F1([n-k+1, -k], [1], -1) for n>=0 and k>=0.
1, 1, 2, 1, 3, 4, 1, 4, 8, 8, 1, 5, 13, 20, 16, 1, 6, 19, 38, 48, 32, 1, 7, 26, 63, 104, 112, 64, 1, 8, 34, 96, 192, 272, 256, 128, 1, 9, 43, 138, 321, 552, 688, 576, 256, 1, 10, 53, 190, 501, 1002, 1520, 1696, 1280, 512, 1, 11, 64, 253, 743, 1683, 2972, 4048
Offset: 0
Examples
First five rows: 1; 1, 2; 1, 3, 4; 1, 4, 8, 8; 1, 5, 13, 20, 16; First five polynomials v(n,x): 1 1 + 2x 1 + 3x + 4x^2 1 + 4x + 8x^2 + 8x^3 1 + 5x + 13x^2 + 20x^3 + 16x^4 (1, 0, -1/2, 1/2, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 3, 4, 0; 1, 4, 8, 8, 0; 1, 5, 13, 20, 16, 0; 1, 6, 19, 38, 48, 32, 0; Triangle in A049600 begins: 0; 0, 1; 0, 1, 2; 0, 1, 3, 4; 0, 1, 4, 8, 8; 0, 1, 5, 13, 20, 16; 0, 1, 6, 19, 38, 48, 32; ... - _Philippe Deléham_, Mar 23 2012
Links
- Reinhard Zumkeller, Rows n = 0..124 of triangle, flattened
Programs
-
Haskell
a208341 n k = a208341_tabl !! (n-1) !! (k-1) a208341_row n = a208341_tabl !! (n-1) a208341_tabl = map reverse a106195_tabl -- Reinhard Zumkeller, Dec 16 2013
-
Maple
T := (n,k) -> hypergeom([n-k+1, -k],[1],-1): seq(lprint(seq(simplify(T(n,k)),k=0..n)),n=0..7); # Peter Luschny, May 20 2015
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2*x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A160232 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208341 *)
-
PARI
T(n,k) = sum(i = 0, k, 2^(k-i)*binomial(n-k,i)*binomial(k,i)); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print();); \\ Michel Marcus, Aug 14 2015
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x), v(n,x) = u(n-1,x) + 2x*v(n-1,x), where u(1,x) = 1, v(1,x) = 1.
As DELTA-triangle with 0 <= k <= n: T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 12 2012
G.f.: (1-2*y*x+y*x^2)/(1-x-2*y*x+y*x^2). - Philippe Deléham, Mar 12 2012
T(n,k) = A106195(n-1,n-k), k = 1..n. - Reinhard Zumkeller, Dec 16 2013
From Peter Bala, Aug 11 2015: (Start)
The following remarks assume the row and column indexing start at 0.
T(n,k) = Sum_{i = 0..k} 2^(k-i)*binomial(n-k,i)*binomial(k,i) = Sum_{i = 0..k} binomial(n-k+i,i)*binomial(k,i).
Riordan array (1/(1 - x), x*(2 - x)/(1 - x)).
O.g.f. 1/(1 - (2*t + 1)*x + t*x^2) = 1 + (1 + 2*t)*x + (1 + 3*t + 4*t^2)*x^2 + ....
Read as a square array, this equals P * transpose(P^2), where P denotes Pascal's triangle A007318. (End)
For kGlen Whitney, Aug 17 2021
Extensions
New name from Peter Luschny, May 20 2015
Offset corrected by Joerg Arndt, Aug 12 2015
Comments