cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208355 Right edge of the triangle in A208101.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 5, 14, 14, 42, 42, 132, 132, 429, 429, 1430, 1430, 4862, 4862, 16796, 16796, 58786, 58786, 208012, 208012, 742900, 742900, 2674440, 2674440, 9694845, 9694845, 35357670, 35357670, 129644790, 129644790, 477638700, 477638700, 1767263190
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 04 2012

Keywords

Comments

Number of achiral polyominoes composed of n+1 triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. An achiral polyomino is identical to its reflection. - Robert A. Russell, Jan 20 2024

Examples

			a(0)=1; a(1)=1; a(2)=1; a(3)=2. - _Robert A. Russell_, Jan 19 2024
____      ________
\  /  /\  \  /\  /  /\     /\
 \/  /__\  \/__\/  /__\   /__\____
     \  /         /\  /\  \  /\  /
      \/         /__\/__\  \/__\/
		

Crossrefs

Polyominoes: A001683(n+2) (oriented), A000207 (unoriented). A369314 (chiral), A000108 (rooted), A047749 ({4,oo}).

Programs

  • Haskell
    a208355 n = a208101 n n
    a208355_list = map last a208101_tabl
    
  • Magma
    [Ceiling(Catalan(n div 2)): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
  • Maple
    A208355_list := proc(len) local D, b, h, R, i, k;
        D := [seq(0, j=0..len+2)]; D[1] := 1; b := true; h := 2; R := NULL;
        for i from 1 to 2*len do
            if b then
                for k from h by -1 to 2 do D[k] := D[k] - D[k-1] od;
                h := h + 1; R := R, abs(D[2]);
            else
                for k from 1 by 1 to h do D[k] := D[k] + D[k+1] od;
            fi;
            b := not b:
        od;
        return R
    end:
    A208355_list(38); # Peter Luschny, Dec 19 2017
  • Mathematica
    T[, 0] = 1; T[n, 1] := n; T[n_, n_] := T[n - 1, n - 2]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 2];
    a[n_] := T[n, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2018, from A208101 *)
    Table[If[EvenQ[n], Binomial[n,n/2]/(n/2+1), Binomial[n+1,(n+1)/2]/((n+3)/2)], {n,0,40}] (* Robert A. Russell, Jan 19 2024 *)

Formula

a(n) = A000108(floor((n+1)/2)), where A000108 = Catalan numbers.
a(n) = A208101(n,n).
a(n) = abs(A099363(n)).
Conjecture: -(n+3)*(n-2)*a(n) - 4*a(n-1) + 4*(n-1)^2*a(n-2) = 0. - R. J. Mathar, Aug 04 2015
From Robert A. Russell, Jan 19 2024: (Start)
a(2m) = C(2m,m)/(m+1); a(2m-1) = a(2m); a(n+2)/a(n) ~ 4.
a(n-1) = 2*A000207(n) - A001683(n+2) = A001683(n+2) - 2*A369314(n) = A000207(n) - A369314(n). (End)
G.f.: (G(z^2)+z*G(z^2)-1)/z, where G(z)=1+z*G(z)^2, the generating function for A000108. - Robert A. Russell, Jan 26 2024
G.f.: ((((1+z)*(1-sqrt(1-4*z^2)))/(2*z^2))-1)/z. - Robert A. Russell, Jan 28 2024
From Peter Bala, Feb 05 2024: (Start)
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A000245(k+1).
a(n) = (-2)^n * hypergeom([-n, 3/2, 2], [1, 4], 2). (End)