A208355 Right edge of the triangle in A208101.
1, 1, 1, 2, 2, 5, 5, 14, 14, 42, 42, 132, 132, 429, 429, 1430, 1430, 4862, 4862, 16796, 16796, 58786, 58786, 208012, 208012, 742900, 742900, 2674440, 2674440, 9694845, 9694845, 35357670, 35357670, 129644790, 129644790, 477638700, 477638700, 1767263190
Offset: 0
Keywords
Examples
a(0)=1; a(1)=1; a(2)=1; a(3)=2. - _Robert A. Russell_, Jan 19 2024 ____ ________ \ / /\ \ /\ / /\ /\ \/ /__\ \/__\/ /__\ /__\____ \ / /\ /\ \ /\ / \/ /__\/__\ \/__\/
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- D. Levin, L. Pudwell, M. Riehl, and A. Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
- Zhicong Lin, David G. L. Wang, and Tongyuan Zhao, A decomposition of ballot permutations, pattern avoidance and Gessel walks, arXiv:2103.04599 [math.CO], 2021.
Crossrefs
Programs
-
Haskell
a208355 n = a208101 n n a208355_list = map last a208101_tabl
-
Magma
[Ceiling(Catalan(n div 2)): n in [1..40]]; // Vincenzo Librandi, Feb 18 2014
-
Maple
A208355_list := proc(len) local D, b, h, R, i, k; D := [seq(0, j=0..len+2)]; D[1] := 1; b := true; h := 2; R := NULL; for i from 1 to 2*len do if b then for k from h by -1 to 2 do D[k] := D[k] - D[k-1] od; h := h + 1; R := R, abs(D[2]); else for k from 1 by 1 to h do D[k] := D[k] + D[k+1] od; fi; b := not b: od; return R end: A208355_list(38); # Peter Luschny, Dec 19 2017
-
Mathematica
T[, 0] = 1; T[n, 1] := n; T[n_, n_] := T[n - 1, n - 2]; T[n_, k_] /; 1 < k < n := T[n, k] = T[n - 1, k] + T[n - 1, k - 2]; a[n_] := T[n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 03 2018, from A208101 *) Table[If[EvenQ[n], Binomial[n,n/2]/(n/2+1), Binomial[n+1,(n+1)/2]/((n+3)/2)], {n,0,40}] (* Robert A. Russell, Jan 19 2024 *)
Formula
a(n) = A208101(n,n).
a(n) = abs(A099363(n)).
Conjecture: -(n+3)*(n-2)*a(n) - 4*a(n-1) + 4*(n-1)^2*a(n-2) = 0. - R. J. Mathar, Aug 04 2015
From Robert A. Russell, Jan 19 2024: (Start)
a(2m) = C(2m,m)/(m+1); a(2m-1) = a(2m); a(n+2)/a(n) ~ 4.
G.f.: (G(z^2)+z*G(z^2)-1)/z, where G(z)=1+z*G(z)^2, the generating function for A000108. - Robert A. Russell, Jan 26 2024
G.f.: ((((1+z)*(1-sqrt(1-4*z^2)))/(2*z^2))-1)/z. - Robert A. Russell, Jan 28 2024
From Peter Bala, Feb 05 2024: (Start)
G.f.: 1/(1 + 2*x) * c(x/(1 + 2*x))^3, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A000245(k+1).
a(n) = (-2)^n * hypergeom([-n, 3/2, 2], [1, 4], 2). (End)
Comments