A208531 Number of distinct sums of subsets of the first n squares {1,4,9,...,n^2}.
2, 4, 8, 16, 28, 52, 89, 147, 224, 324, 445, 589, 758, 954, 1179, 1435, 1724, 2048, 2409, 2809, 3250, 3734, 4263, 4839, 5464, 6140, 6869, 7653, 8494, 9394, 10355, 11379, 12468, 13624, 14849, 16145, 17514, 18958, 20479, 22079, 23760, 25524, 27373, 29309, 31334
Offset: 1
Keywords
Examples
All subsets of {1,4,9,16} give distinct sums, so a(4)=16. Four pairs of subsets of {1,4,9,16,25} have the same sum, for example {9,16} and {25}, resulting in a(5)=28.
Links
- Toshitaka Suzuki, Proof of a conjectured formula for A208531, Jul 29 2019
Programs
-
Mathematica
Table[Length[Union[Total /@ Subsets[Range[n]^2]]], {n, 17}] (* T. D. Noe, Feb 28 2012 *)
Formula
Conjectures from Colin Barker, Feb 15 2016: (Start)
a(n) = (2*n^3+3*n^2+n-366)/6 for n>8.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>12.
G.f.: x*(2-4*x+4*x^2-2*x^4+8*x^5-7*x^6+7*x^7-10*x^8+6*x^9-6*x^10+4*x^11) / (1-x)^4. (End)
For a proof of these conjectures see the Suzuki (2019) link.
Extensions
a(23)-a(26) from Zak Seidov, Feb 29 2012
a(27)-a(40) from Jud McCranie, Feb 29 2012
a(41)-a(45) from Pontus von Brömssen, Mar 29 2025
Comments