cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209084 a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4.

Original entry on oeis.org

0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104
Offset: 0

Views

Author

Seiichi Kirikami, Mar 06 2012

Keywords

Comments

a(n)/A063727(n) are convergents for A134972.
Abs(Sum_{i=0..n} C(n,n-i)*a(i)-(sqrt(5)-1)* A033887(n))->0. - Seiichi Kirikami, Jan 20 2016

References

  • E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966.

Crossrefs

Cf. A086344 (this sequence with signs).

Programs

  • Magma
    I:=[0,4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016
  • Mathematica
    RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4}, a, {n, 30}]
    LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *)
  • PARI
    concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016
    

Formula

a(n) = (2/sqrt(5))*((1+sqrt(5))^n-(1-sqrt(5))^n).
G.f.: 4*x/(1-2*x-4*x^2). - Bruno Berselli, Mar 08 2012
a(n) = 4*A085449(n) = 2*A103435(n). - Bruno Berselli, Mar 08 2012
Sum_{n>=1} 1/a(n) = (1/4) * A269991. - Amiram Eldar, Feb 01 2021