cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209295 Antidiagonal sums of the gcd(.,.) array A109004.

Original entry on oeis.org

0, 2, 5, 8, 12, 14, 21, 20, 28, 30, 37, 32, 52, 38, 53, 60, 64, 50, 81, 56, 92, 86, 85, 68, 124, 90, 101, 108, 132, 86, 165, 92, 144, 138, 133, 152, 204, 110, 149, 164, 220, 122, 237, 128, 212, 234, 181, 140, 288, 182, 245, 216, 252, 158, 297, 244
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2013

Keywords

Crossrefs

Programs

  • Magma
    A209295:= func< n | n eq 0 select 0 else (&+[(n/d+1)*EulerPhi(d): d in Divisors(n)]) >;
    [A209295(n): n in [0..40]]; // G. C. Greubel, Jun 24 2024
    
  • Maple
    a:= n-> add(igcd(j, n-j), j=0..n):
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 25 2019
    # Alternative (computes [a(n), n=0..10000] about 25 times faster):
    a := n -> add(numtheory:-phi(d)*(n/d + 1), d = numtheory:-divisors(n)):
    seq(a(n), n = 0..57); # Peter Luschny, Aug 25 2019
  • Mathematica
    Table[Sum[GCD[n-k,k], {k,0,n}], {n,0,50}] (* G. C. Greubel, Jan 04 2018 *)
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; a[n_] := n + Times @@ f @@@ FactorInteger[n]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = n + sum(k=1, n, gcd(n,k)); \\ Michel Marcus, Jan 05 2018
    
  • SageMath
    def A209295(n): return sum((n/k+1)*euler_phi(k) for k in (1..n) if (k).divides(n))
    [A209295(n) for n in range(41)] # G. C. Greubel, Jun 24 2024

Formula

a(0) = 0; a(n) = A018804(n) + n for n > 0. [Amended by Georg Fischer, Jan 25 2020]
a(n) = Sum_{d|n} phi(d)*(n/d + 1) for n >= 1. - Peter Luschny, Aug 25 2019