A054523
Triangle read by rows: T(n,k) = phi(n/k) if k divides n, T(n,k)=0 otherwise (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 6, 0, 0, 0, 0, 0, 1, 4, 2, 0, 1, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 0, 1, 4, 4, 0, 0, 1, 0, 0, 0, 0, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 6
Offset: 1
Triangle begins
1;
1, 1;
2, 0, 1;
2, 1, 0, 1;
4, 0, 0, 0, 1;
2, 2, 1, 0, 0, 1;
6, 0, 0, 0, 0, 0, 1;
4, 2, 0, 1, 0, 0, 0, 1;
6, 0, 2, 0, 0, 0, 0, 0, 1;
4, 4, 0, 0, 1, 0, 0, 0, 0, 1;
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
4, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 1;
- Ronald L. Graham, D. E. Knuth, Oren Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994, p. 136.
-
a054523 n k = a054523_tabl !! (n-1) !! (k-1)
a054523_row n = a054523_tabl !! (n-1)
a054523_tabl = map (map (\x -> if x == 0 then 0 else a000010 x)) a126988_tabl
-- Reinhard Zumkeller, Jan 20 2014
-
A054523:= func< n,k | k eq n select 1 else (n mod k) eq 0 select EulerPhi(Floor(n/k)) else 0 >;
[A054523(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 24 2024
-
A054523 := proc(n,k) if n mod k = 0 then numtheory[phi](n/k) ; else 0; end if; end proc: # R. J. Mathar, Apr 11 2011
-
T[n_, k_]:= If[k==n,1,If[Divisible[n, k], EulerPhi[n/k], 0]];
Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Dec 15 2017 *)
-
for(n=1, 10, for(k=1, n, print1(if(!(n % k), eulerphi(n/k), 0), ", "))) \\ G. C. Greubel, Dec 15 2017
-
def A054523(n,k):
if (k==n): return 1
elif (n%k)==0: return euler_phi(int(n//k))
else: return 0
flatten([[A054523(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 24 2024
A006580
a(n) = Sum_{k=1..n-1} lcm(k,n-k).
Original entry on oeis.org
0, 0, 1, 4, 8, 20, 21, 56, 60, 96, 105, 220, 152, 364, 301, 360, 464, 816, 549, 1140, 760, 1036, 1221, 2024, 1196, 2200, 2041, 2484, 2184, 4060, 2205, 4960, 3664, 4224, 4641, 5180, 4008, 8436, 6517, 7072, 5980, 11480, 6321, 13244, 8888, 9540, 11661, 17296
Offset: 0
- Marc LeBrun, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Antidiagonal sums of array
A003990.
-
a006580 n = a006580_list !! (n-1)
a006580_list = map sum a003990_tabl
-- Reinhard Zumkeller, Aug 05 2012
-
a:= n-> add(ilcm(j, n-j), j=0..n):
seq(a(n), n=0..70); # Alois P. Heinz, Aug 25 2019
-
Table[ Sum[ LCM[ k, n-k ], {k, 1, n-1} ], {n, 2, 50} ] (* Olivier Gérard, Aug 15 1997 *)
f1[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); f2[p_, e_] := 1 - (p - 1)*e; a[n_] := (Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct)*n/6; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Apr 28 2023 *)
-
a(n) = sum(k=1, n-1, lcm(k, n-k)); \\ Michel Marcus, Aug 11 2017
A344510
a(n) = Sum_{k=1..n} k * gcd(k,n).
Original entry on oeis.org
1, 5, 12, 24, 35, 63, 70, 112, 135, 185, 176, 312, 247, 371, 450, 512, 425, 729, 532, 920, 903, 935, 782, 1488, 1125, 1313, 1458, 1848, 1247, 2475, 1426, 2304, 2277, 2261, 2660, 3672, 2035, 2831, 3198, 4400, 2501, 4977, 2752, 4664, 5265, 4163, 3290, 6912, 4459, 6125, 5508, 6552
Offset: 1
-
A344510:= func< n | (n/2)*(&+[(d+1)*EulerPhi(Floor(n/d)): d in Divisors(n)]) >;
[A344510(n): n in [1..60]]; // G. C. Greubel, Jun 24 2024
-
a[n_] := Sum[k * GCD[k, n], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 21 2021 *)
A344510[n_]:= (n/2)*DivisorSum[n, (#+1)*EulerPhi[n/#] &];
Table[A344510[n], {n,60}] (* G. C. Greubel, Jun 24 2024 *)
-
a(n) = sum(k=1, n, k*gcd(k, n));
-
a(n) = n*sumdiv(n, d, eulerphi(n/d)*(d+1))/2;
-
def A344510(n): return (n/2)*sum((k+1)*euler_phi(int(n//k)) for k in (1..n) if (k).divides(n))
[A344510(n) for n in range(1,61)] # G. C. Greubel, Jun 24 2024
A327031
A(n, k) = Sum_{d|n} phi(d)*T(n/d, k) if n > 0 and A(0, k) = 0 where T(n, k) = binomial(n+k-1, n). Square array read by ascending antidiagonals, with n, k >= 0.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 5, 3, 0, 0, 4, 8, 9, 4, 0, 0, 5, 12, 16, 14, 5, 0, 0, 6, 14, 27, 28, 20, 6, 0, 0, 7, 21, 33, 53, 45, 27, 7, 0, 0, 8, 20, 56, 72, 95, 68, 35, 8, 0, 0, 9, 28, 54, 132, 146, 159, 98, 44, 9, 0, 0, 10, 30, 84, 144, 285, 276, 252, 136, 54, 10, 0
Offset: 0
[0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000004
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... A001477
[2] 0, 2, 5, 9, 14, 20, 27, 35, 44, 54, ... A000096
[3] 0, 3, 8, 16, 28, 45, 68, 98, 136, 183, ... A255993 (conj.)
[4] 0, 4, 12, 27, 53, 95, 159, 252, 382, 558, ... A327032
[5] 0, 5, 14, 33, 72, 146, 276, 490, 824, 1323, ...
[6] 0, 6, 21, 56, 132, 285, 572, 1078, 1924, 3276, ...
[7] 0, 7, 20, 54, 144, 360, 828, 1758, 3480, 6489, ...
[8] 0, 8, 28, 84, 236, 615, 1479, 3297, 6869, 13491, ...
[9] 0, 9, 30, 93, 284, 815, 2150, 5215, 11728, 24694, ...
A209295,
-
DivisorSquareArray := proc(p, T, len) local row:
row := (n, k) -> add(p(d)*T(n/d, k), d = numtheory:-divisors(n)):
seq(lprint(seq(add(j, j=row(n, k)), k=0..len-1)), n=0..len-1) end:
DivisorSquareArray(numtheory:-phi, (n, k) -> binomial(n+k-1, n), 9);
-
def DivisorSquareArray(p, T, Len):
D = [[0]*Len]
for n in (1..Len-1):
r = lambda k: [p(d)*T(n//d, k) for d in divisors(n)]
L = [sum(r(k)) for k in (0..Len-1)]
D.append(L)
return D
def T(n, k): return binomial(n + k - 1, n)
DivisorSquareArray(euler_phi, T, 10)
Showing 1-4 of 4 results.
Comments