cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A207380 Total area of the shadows of the three views of a three-dimensional version of the shell model of partitions with n shells.

Original entry on oeis.org

0, 3, 10, 21, 42, 70, 122, 187, 298, 443, 667, 957, 1401, 1960, 2775, 3828, 5295, 7167, 9745, 12998, 17380, 22915, 30196, 39347, 51274, 66126, 85209, 108942, 139055, 176273, 223148, 280733, 352623, 440646, 549597, 682411, 845852, 1044084, 1286512, 1579582
Offset: 0

Views

Author

Omar E. Pol, Feb 17 2012

Keywords

Comments

In this model each part of a partition can be represented by a cuboid of size 1 x 1 x L, where L is the size of the part. One of the views is a rectangle formed by ones whose area is n*A000041(n) = A066186(n). Each element of the first view is equal to the volume of a horizontal column parallel to the axis x. The second view is the n-th slice illustrated in A026792 which has A000041(n) levels and its area is A006128(n) equals the total number of parts of all partitions of n and equals the sum of largest parts of all partitions of n. Each zone contains a partition of n. Each element of the second view is equal to the volume of a horizontal column parallel to the axis y. The third view is a triangle because it is also the n-th slice of the tetrahedron of A209655. The area of triangle is A000217(n). Each element of the third view is equal to the volume of a vertical column parallel to the axis z. The sum of elements of each view is A066186(n) equals the area of the first view. For more information about the shell model of partitions see A135010 and A182703.

Examples

			For n = 5 the three views of the three-dimensional shell model of partitions with 5 shells look like this:
.
.   A066186(5) = 35     A006128(5) = 20
.
.         1 1 1 1 1     5
.         1 1 1 1 1     3 2
.         1 1 1 1 1     4 1
.         1 1 1 1 1     2 2 1
.         1 1 1 1 1     3 1 1
.         1 1 1 1 1     2 1 1 1
.         1 1 1 1 1     1 1 1 1 1
.
.
.         7 6 4 2 1
.           1 2 3 2
.             1 1 2
.               1 1
.                 1
.
.   A000217(5) = 15
.
The areas of the shadows of the three views are A066186(5) = 35, A006128(5) = 20 and A000217(5) = 15, therefore the total area of the three shadows is 35+20+15 = 70, so a(5) = 70.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, n]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+g[1]]
          fi
        end:
    a:= n-> n*b(n, n)[1] +b(n, n)[2] +n*(n+1)/2:
    seq (a(n), n=0..50);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{f, g}, If [n == 0 || i == 1, {1, n}, f = b[n, i-1]; g = If[i>n, {0, 0}, b[n-i, i]]; Join[f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]] ]]]; a[n_] := n*b[n, n][[1]] + b[n, n][[2]] + n*(n+1)/2; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jun 18 2015, after Alois P. Heinz *)

Formula

a(n) = n * A000041(n) + A000217(n) + A006128(n) = A066186(n) + A000217(n) + A006128(n).

Extensions

More terms from Alois P. Heinz, Mar 22 2012

A209918 Tetrahedron in which the n-th slice is also one of the three views of the shell model of partitions of A207380 with n shells.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 4, 2, 1, 1, 2, 2, 1, 1, 1, 7, 6, 4, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 26 2012

Keywords

Comments

Each slice of the tetrahedron is a triangle, thus the number of elements in the n-th slice is A000217(n). The slices are perpendicular to the slices of A026792. Each element of the n-th slice equals the volume of a column of the shell model of partitions with n shells. The sum of each column of the n-th slice is A000041(n). The sum of all elements of the n-th slice is A066186(n).
It appears that the triangle formed by the first row of each slice gives A058399.
It appears that the triangle formed by the last column of each slice gives A008284 and A058398.
Also consider a vertical rectangle on the infinite square grid with shorter side = n and longer side = p(n) = A000041(n). Each row of rectangle represents a partition of n. Each part of each partition of n is a horizontal rectangle with shorter side = 1 and longer side = k, where k is the size of the part. It appears that T(n,k,j) is also the number of k-th parts of all partitions of n in the j-th column of rectangle.

Examples

			---------------------------------------------------------
Illustration of first five                       A181187
slices of the tetrahedron                        Row sum
---------------------------------------------------------
. 1,                                                1
.    2, 1,                                          3
.       1,                                          1
.          3, 2, 1                                  6
.             1, 1,                                 2
.                1,                                 1
.                   5, 4, 2, 1,                    12
.                      1, 2, 2,                     5
.                         1, 1                      2
.                            1,                     1
.                               7, 6, 4, 2, 1,     20
.                                  1, 2, 3, 2,      8
.                                     1, 1, 2,      4
.                                        1, 1,      2
.                                           1,      1
--------------------------------------------------------
. 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7,
.
Note that the 5th slice appears as one of three views of the model in the example section of A207380.
		

Crossrefs

Row sums give A181187. Column sums give A209656. Main diagonal gives A210765. Another version is A209655.

A210763 Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which lists the sums of the columns of the shell model of partitions with n shells.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 2, 5, 1, 1, 2, 2, 2, 3, 2, 2, 3, 5, 1, 1, 1, 2, 7, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 3, 3, 4, 4, 7, 1, 1, 1, 2, 4, 11, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 4, 4, 5, 4, 7, 3, 3, 3, 5, 6, 11, 1, 1, 1, 1, 2, 4, 15
Offset: 1

Views

Author

Omar E. Pol, Apr 24 2012

Keywords

Examples

			--------------------------------------------------------
Illustration of first five                      A210952
slices of the tetrahedron                       Row sum
--------------------------------------------------------
. 1,                                               1
.    1,                                            1
.    1, 2,                                         3
.          1,                                      1
.          1, 2,                                   3
.          1, 1, 3,                                5
.                   1,                             1
.                   1, 2,                          3
.                   2, 2, 3,                       7
.                   1, 1, 2, 5,                    9
.                               1,                 1
.                               1, 2,              3
.                               2, 2, 3,           7
.                               2, 2, 3, 5,       12
.                               1, 1, 1, 2, 7,    12
--------------------------------------------------------
. 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7,
Each column sum in the slice j is equal to A000041(j).
.
Also this sequence can be written as a triangle read by rows in which each row is a flattened triangle. The sequence begins:
1;
1,1,2;
1,1,2,1,1,3;
1,1,2,2,2,3,1,1,2,5;
1,1,2,2,2,3,2,2,3,5,1,1,1,2,7;
1,1,2,2,2,3,3,3,3,5,3,3,4,4,7,1,1,1,2,4,11;
1,1,2,2,2,3,3,3,3,5,4,4,5,4,7,3,3,3,5,6,11,1,1,1,1,2,4,15;
Row n has length A000217(n). Row sums give A066186. Right border gives A000041(n), n >= 1.
		

Crossrefs

A210765 Triangle read by rows in which row n lists the number of partitions of n together with n-1 ones.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 1, 1, 1, 7, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 22, 1, 1, 1, 1, 1, 1, 1, 30, 1, 1, 1, 1, 1, 1, 1, 1, 42, 1, 1, 1, 1, 1, 1, 1, 1, 1, 56, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 77, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 101, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Mar 26 2012

Keywords

Comments

The sum of row n is S_n = n - 1 + A000041(n) = A133041(n) - 1.
Also consider a vertical rectangle on the infinite square grid with shorter side = n and longer side = p(n) = A000041(n). Each row of rectangle represents a partition of n. Each part of each partition of n is a horizontal rectangle with shorter side = 1 and longer side = k, where k is the size of the part. It appears that T(n,k) is also the number of k-th parts of all partitions of n in the k-th column of rectangle.

Examples

			Triangle begins:
1;
2,  1;
3,  1, 1;
5,  1, 1, 1;
7,  1, 1, 1, 1;
11, 1, 1, 1, 1, 1;
15, 1, 1, 1, 1, 1, 1;
22, 1, 1, 1, 1, 1, 1, 1;
30, 1, 1, 1, 1, 1, 1, 1, 1;
42, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

A210960 Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which list the number of parts in the columns of the shell model of partitions with n shells mentioned in A210970.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 2, 1, 1, 3, 4, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2012

Keywords

Examples

			--------------------------------------------------------
Illustration of first five
slices of the tetrahedron                       Row sum
--------------------------------------------------------
. 1,                                               1
.    1,                                            1
.    1, 1,                                         2
.          1,                                      1
.          1, 1,                                   2
.          1, 1, 1,                                3
.                   1,                             1
.                   1, 1,                          2
.                   2, 1, 1,                       4
.                   1, 2, 1, 1,                    5
.                               1,                 1
.                               1, 1,              2
.                               2, 1, 1,           4
.                               2, 2, 1, 1,        6
.                               1, 2, 2, 1, 1,     7
--------------------------------------------------------
. 1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1,
.
It appears that column sums give A058399.
Also, written as a triangle read by rows in which each row is a flattened triangle, begins:
1;
1,1,1,
1,1,1,1,1,1;
1,1,1,2,1,1,1,2,1,1;
1,1,1,2,1,1,2,2,1,1,1,2,2,1,1;
1,1,1,2,1,1,3,2,1,1,3,3,2,1,1,1,3,3,2,1,1;
1,1,1,2,1,1,3,2,1,1,4,3,2,1,1,3,4,3,2,1,1,1,3,4,3,2,1,1;
In which row sums give A006128.
		

Crossrefs

Showing 1-5 of 5 results.