cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145268 G.f. A(x) satisfies A(x) = 1/Product_{k>0} (1-x^k*A(x)).

Original entry on oeis.org

1, 1, 3, 9, 30, 104, 378, 1414, 5424, 21208, 84244, 339008, 1379173, 5663078, 23439651, 97692524, 409650348, 1727034770, 7315915371, 31124324364, 132926220818, 569695276362, 2449395461726, 10561857055472, 45664873651576
Offset: 0

Views

Author

Vladeta Jovovic, Oct 05 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 104*x^5 + 378*x^6 +...
The g.f. satisfies:
(0) A(x) = 1/((1-x*A(x)) * (1-x^2*A(x)) * (1-x^3*A(x)) *...).
(1) A(x) = 1 + x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-x^2)) + x^3*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) +...
(2) A(x) = 1 + x*A(x)/[(1-x)*(1-x*A(x))] + x^4*A(x)^2/[(1-x)*(1-x^2)*(1-x*A(x))*(1-x^2*A(x))] + x^9*A(x)^3/[(1-x)*(1-x^2)*(1-x^3)*(1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))] +...
(3) A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)/((1-x*A(x))*(1-x^2*A(x))) + x^3*A(x)/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
(4) A(x) = exp( x*A(x)/(1-x) + x^2*A(x)^2/(2*(1-x^2)) + x^3*A(x)^3/(3*(1-x^3)) +...).
		

Crossrefs

Programs

  • Mathematica
    terms = 25; A[] = 0; Do[A[x] = 1/Product[1-x^k A[x], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[(r*(s-1)*s^3*Derivative[0, 1][QPochhammer][s, r]) / (2*Pi*((s-1)^2 * (QPolyGamma[1, Log[s]/Log[r], r]/Log[r]^2) - s))]} /. FindRoot[{s*QPochhammer[s, r] == 1 - s, 1 + s/(1 - s) == (Log[1 - r] + QPolyGamma[0, Log[s]/Log[r], r])/Log[r]}, {r, 1/5}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/prod(k=1,n,(1-x^k*A+x*O(x^n))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m/prod(k=1,m,(1-x^k+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,sqrtint(n+1),x^(m^2)*A^m/prod(k=1,m,(1-x^k)*(1-x^k*A+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)} /* Paul D. Hanna, Feb 11 2012 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1,n,x^m*A^m/(m*(1-x^m +x*O(x^n))))));polcoeff(A,n)} /* Paul D. Hanna, Mar 16 2012 */

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^n / Product_{k=1..n} (1-x^k) due to an identity of Euler. - Paul D. Hanna, May 21 2011
(2) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^n / [Product_{k=1..n} (1-x^k)*(1-x^k*A(x))] due to Cauchy's identity. - Paul D. Hanna, May 21 2011
(3) A(x) = 1 + Sum_{n>=1} x^n*A(x) / Product_{k=1..n} (1 - x^k*A(x)) due to an identity of Euler. - Paul D. Hanna, Feb 11 2012
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^n / (n*(1-x^n)) ). - Paul D. Hanna, Mar 16 2012
a(n) ~ c * d^n / n^(3/2), where d = 4.6001032462748928128832068474594... and c = 0.695157167276255862302452181... - Vaclav Kotesovec, Aug 12 2021
Radius of convergence r = 0.2173864251437807911560951549077... = 1/d and A(r) = 2.126717513863405832814236571639... satisfy (a) A(r) = 1 / Sum_{n>=1} r^n/(1 - r^n*A(r)) and (b) A(r) = 1 / Product_{n>=1} (1 - r^n*A(r)). - Paul D. Hanna, Mar 02 2024

Extensions

More terms from Max Alekseyev, Jan 31 2010

A325213 G.f.: A(x) = exp( Sum_{n>=1} (x^n/n) * (1 + x^n*A(x)^n) / (1 - x^n*A(x)^n)).

Original entry on oeis.org

1, 1, 3, 7, 22, 68, 230, 790, 2809, 10151, 37346, 139116, 524160, 1993184, 7641077, 29497043, 114568292, 447397474, 1755543081, 6918285937, 27369693199, 108659122477, 432762724820, 1728625913332, 6923326780630, 27797059897118, 111859099064653, 451086075723925, 1822628515630354, 7377839562543650
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 22*x^4 + 68*x^5 + 230*x^6 + 790*x^7 + 2809*x^8 + 10151*x^9 + 37346*x^10 + 139116*x^11 + 524160*x^12 + ...
satisfies
log(A(x)) = x*(1+x*A(x))/(1-x*A(x)) + x^2/2*(1+x^2*A(x)^2)/(1-x^2*A(x)^2) + x^3/3*(1+x^3*A(x)^3)/(1-x^3*A(x)^3) + x^4/4*(1+x^4*A(x)^4)/(1-x^4*A(x)^4) + x^5/5*(1+x^5*A(x)^5)/(1-x^5*A(x)^5) + x^6/6*(1+x^6*A(x)^6)/(1-x^6*A(x)^6) + ...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 53*x^4/4 + 191*x^5/5 + 761*x^6/6 + 2969*x^7/7 + 11893*x^8/8 + 47677*x^9/9 + 192935*x^10/10 + 783575*x^11/11 + 3197657*x^12/12 + ...
		

Crossrefs

Cf. A210043.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=Vec( exp( sum(m=1, #A+1, x^m/m * (1 + x^m*Ser(A)^m)/(1 - x^m*Ser(A)^m) ) )) ); A[n+1]}
    for(n=0, 40, print1(a(n), ", "))
Showing 1-2 of 2 results.