cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A145267 G.f. satisfies A(x) = Product_{k>0} (1+x^k*A(x)).

Original entry on oeis.org

1, 1, 2, 5, 12, 30, 77, 201, 532, 1427, 3868, 10579, 29161, 80931, 225954, 634197, 1788453, 5064877, 14398536, 41074364, 117541744, 337337862, 970704394, 2800059428, 8095161902, 23452565124, 68076579332, 197965830430
Offset: 0

Views

Author

Vladeta Jovovic, Oct 05 2008

Keywords

Examples

			From _Paul D. Hanna_, May 20 2011: (Start)
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 30*x^5 + 77*x^6 +...
G.f.: A(x) = (1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))*(1+x^4*A(x))*...
G.f.: A(x) = (1+x*A(x)) + x^2*A(x)*(1 + x^3*A(x))*(1+x*A(x))/(1-x) + x^7*A(x)^2*(1 + x^5*A(x))*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^15*A(x)^3*(1 + x^7*A(x))*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) +... (End)
G.f.: A(x) = 1 + x*A(x)/(1-x) + x^3*A(x)^2/((1-x)*(1-x^2)) + x^6*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) +... - _Paul D. Hanna_, Jul 01 2011
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[1 + x^k*A[x], {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
    (* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-s, r] == s*(1 + s), Log[1 - r] + ((1 + 2*s)*Log[r])/(1 + s) + QPolyGamma[0, Log[-s]/Log[r], r] == 0}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 26 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(m=1,n,(1+A*x^m+x*O(x^n))));polcoeff(A,n)}  /* Paul D. Hanna, May 20 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^(m*(3*m+1)/2)*A^m*(1 + x^(2*m+1)*A)*prod(k=1,m,(1+A*x^k)/(1-x^k+x*O(x^n)))));polcoeff(A,n)}  /* Paul D. Hanna, May 20 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^(m*(m+1)/2)*A^m/prod(k=1,m,1-x^k +x*O(x^n))));polcoeff(A,n)} /* Paul D. Hanna, Jul 01 2011 */

Formula

G.f. satisfies: A(x) = Sum_{n>=0} x^(n*(3n+1)/2)*A(x)^n*(1 + x^(2n+1)*A(x))*Product_{k=1..n} (1 + x^k*A(x))/(1-x^k) due to Sylvester's identity. - Paul D. Hanna, May 20 2011
G.f. satisfies: A(x) = Sum_{n>=0} x^(n*(n+1)/2)*A(x)^n / Product_{k=1..n} (1-x^k). - Paul D. Hanna, Jul 01 2011
a(n) ~ c * d^n / n^(3/2), where d = 3.060735101304296413235... and c = 2.45762465379034328... - Vaclav Kotesovec, Aug 12 2021
Radius of convergence r = 0.32671889820646736561... = 1/d and A(r) = 3.6673575238633912689... satisfy (1) A(r) = 1 / Sum_{n>=1} r^n/(1 + r^n*A(r)) and (2) A(r) = Product_{n>=1} (1 + r^n*A(r)). - Paul D. Hanna, Mar 02 2024

Extensions

More terms from Max Alekseyev, Jan 31 2010

A196150 G.f. satisfies A(x) = 1/Product_{n>=1} (1 - x^n*A(x)^2).

Original entry on oeis.org

1, 1, 4, 18, 92, 505, 2922, 17541, 108270, 682823, 4380942, 28504466, 187636994, 1247375147, 8362420498, 56471709841, 383790966537, 2622982116829, 18016055333571, 124296340608870, 860986586024343, 5985590694574930, 41749023026002831
Offset: 0

Views

Author

Paul D. Hanna, Sep 28 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 92*x^4 + 505*x^5 + 2922*x^6 + ...
where
(0) A(x) = 1/((1-x*A(x)^2) * (1-x^2*A(x)^2) * (1-x^3*A(x)^2) * ...).
(1) A(x) = 1 + x*A(x)^2/(1-x) + x^2*A(x)^4/((1-x)*(1-x^2)) + x^3*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A(x) = 1 + x*A(x)^2/[(1-x)*(1-x*A(x)^2)] + x^4*A(x)^4/[(1-x)*(1-x^2)*(1-x*A(x)^2)*(1-x^2*A(x)^2)] + x^9*A(x)^6/[(1-x)*(1-x^2)*(1-x^3)*(1-x*A(x)^2)*(1-x^2*A(x)^2)*(1-x^3*A(x)^2)] + ...
(3) A(x) = 1 + x*A(x)^2/(1-x*A(x)^2) + x^2*A(x)^2/((1-x*A(x)^2)*(1-x^2*A(x)^2)) + x^3*A(x)^2/((1-x*A(x)^2)*(1-x^2*A(x)^2)*(1-x^3*A(x)^2)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/Product[1 - x^k*A[x]^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[r*s^3 * (s^2 - 1) * Derivative[0, 1][QPochhammer][s^2, r] / (8*Pi*((s^2 - 1)^2*(QPolyGamma[1, 2*Log[s]/Log[r], r] / Log[r]^2) - s^2))]} /. FindRoot[{(1 - s^2)/QPochhammer[s^2, r] == s, 1/2 + s^2/(1 - s^2) == (Log[1 - r] + QPolyGamma[0, 2*Log[s]/Log[r], r]) / Log[r]}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^2+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(2*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(2*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^2+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^2/prod(k=1, m, (1-x^k*A^2+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(2*n) / Product_{k=1..n} (1-x^k) due to an identity of Euler.
(2) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^(2*n)/[Product_{k=1..n} (1-x^k)*(1-x^k*A(x)^2)] due to Cauchy's identity.
(3) A(x) = 1 + Sum_{n>=1} x^n*A(x)^2 / Product_{k=1..n} (1 - x^k*A(x)^2).
a(n) ~ c * d^n / n^(3/2), where d = 7.4702934491577480082... and c = 0.270144986991156076... - Vaclav Kotesovec, Aug 12 2021
Radius of convergence r = 0.1338635499135240586... = 1/d and A(r) = 1.5228379370493260575... satisfy A(r) = 1 / sqrt( Sum_{n>=1} 2*r^n/(1 - r^n*A(r)^2) ) and A(r) = 1 / Product_{n>=1} (1 - r^n*A(r)^2). - Paul D. Hanna, Mar 02 2024

A190862 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))/(1 - x^n*A(x)).

Original entry on oeis.org

1, 2, 8, 36, 174, 888, 4716, 25808, 144568, 825030, 4780176, 28045860, 166295716, 994959560, 5999349896, 36420226288, 222415222446, 1365445230212, 8422174103796, 52168047039764, 324366739546304, 2023789526326096
Offset: 0

Views

Author

Paul D. Hanna, May 21 2011

Keywords

Comments

Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)); here q=x, x=x*A(x), y=1, z=0.

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 174*x^4 + 888*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)/(1-x*A) * (1+x^2*A)/(1-x^2*A) * (1+x^3*A)/(1-x^3*A) * ...
(1) A = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A/((1-x*A)*(1-x)) + 2*x^3*A^2*(1+x)/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 2*x^6*A^3*(1+x)*(1+x^2)/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ... (cf. A192619)
		

Crossrefs

Cf. A145267, A145268, A190861, A192619 (g.f. A(x)^2), A192621.

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])/(1 - x^k*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
    (* Calculation of constant d: *) 1/r /. FindRoot[{(s-1)*QPochhammer[-s, r] == -s*(s+1) * QPochhammer[s, r], (s^2 - 1)*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]) + Log[r]*(s^2 - 2*s - 1) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 26 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(m=1,n,(1+x^m*A)/(1-x^m*A+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^m*prod(k=1,m,(1+x^(k-1))/((1-x^k*A+x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k))))));polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^n*Product_{k=1..n} (1+x^(k-1))/(1-x^k) due to the q-binomial theorem.
(2) A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2)*A(x)^n*Product_{k=1..n} (1+x^(k-1))/((1-x^k*A(x))*(1-x^k)) due to the Heine identity.
(3) A(x)^2 = 1 + Sum_{n>=1} x^n*A(x)^n * Product_{k=1..n} (1+x^(k-1))^2/((1-x^k*A(x))*(1-x^k)) due to the Heine identity.
a(n) ~ c * d^n / n^(3/2), where d = 6.6934289011143535333002543297069340451347... and c = 0.946606599119645056034760125205426820822370610602636232678... - Vaclav Kotesovec, Sep 26 2023
Radius of convergence r = 0.149400257293166331446262618504038357688... = 1/d and A(r) = 2.500666835731534833961673247439001530869... satisfy A(r) = 1 / Sum_{n>=1} 2*r^n/(1 - r^(2*n)*A(r)^2) and A(r) = Product_{n>=1} (1 + r^n*A(r))/(1 - r^n*A(r)). - Paul D. Hanna, Mar 02 2024

A301455 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x)^k)^k.

Original entry on oeis.org

1, 1, 4, 16, 74, 360, 1840, 9698, 52409, 288697, 1615275, 9153850, 52434770, 303104532, 1765920785, 10358843904, 61129390652, 362650003202, 2161590275029, 12938838382316, 77745063802045, 468760264760369, 2835272729215565, 17198394229862818, 104598950726341920, 637709136315071504
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 16*x^3 + 74*x^4 + 360*x^5 + 1840*x^6 + 9698*x^7 + 52409*x^8 + 288697*x^9 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x)^2)^2 * (1 - x^3*A(x)^3)^3 * ...).
log(A(x)) = x + 7*x^2/2 + 37*x^3/3 + 215*x^4/4 + 1251*x^5/5 + 7459*x^6/6 + 44885*x^7/7 + 272727*x^8/8 + ... + A255672(n)*x^n/n + ...
		

Crossrefs

Formula

G.f. A(x) satisfies: A(x) = exp(Sum_{k>=1} sigma_2(k)*x^k*A(x)^k/k).

A171804 G.f. satisfies: A(x) = P(x*A(x)^3) where A(x/P(x)^3) = P(x) is the g.f. for partition numbers (A000041).

Original entry on oeis.org

1, 1, 5, 33, 252, 2090, 18299, 166450, 1557595, 14898228, 145003996, 1431487820, 14299208690, 144262270360, 1467857359738, 15045486643137, 155208575698230, 1610201799670560, 16788969497000365, 175838914655128068
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2009

Keywords

Examples

			From _Peter Bala_, Nov 12 2024: (Start)
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ...
I(P(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 153*x^5 + 646*x^6 + 2816*x^7 + ...
I^2(P(x)) = 1 + x + 4*x^2 + 20*x^3 + 115*x^4 + 714*x^5 + 4669*x^6 + 31671*x^7 + ...
I^3(P(x)) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + 18299*x^6 + 166450*x^7 + ... = the g.f. A(x). (End)
		

Crossrefs

Programs

  • PARI
    a(n)=polcoeff((1/x*serreverse(x*eta(x+x*O(x^n))^3))^(1/3), n)
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*(A^3+x*O(x^n))^k))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(3*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(3*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^3+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies
(1) A(x) = 1/Product_{k>0} (1-x^k*A(x)^3).
(2) A(x) = Sum_{n>=0} x^n*A(x)^(3*n) / Product_{k=1..n} (1-x^k*A(x)^(3*k)).
(3) A(x) = Sum_{n>=0} x^(n^2)*A(x)^(3*n^2) / Product_{k=1..n} (1-x^k*A(x)^(3*k))^2.
G.f.: A(x) = 1 + x + 5*x^2 + 33*x^3 + 252*x^4 + 2090*x^5 + ...
G.f. satisfies A(x/P(x)^3) = P(x) where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + ...
and x/P(x)^3 = x - 3*x^2 + 5*x^4 - 7*x^7 + 9*x^11 - 11*x^16 + ...
Also, the g.f. A = A(x) satisfies:
(1) A(x) = 1/((1-x*A^3) * (1-x^2*A^6) * (1-x^3*A^9) * (1-x^4*A^12) * ...).
(2) A(x) = 1 + x*A^3/(1-x*A^3) + x^2*A^6/((1-x*A^3)*(1-x^2*A^6)) + x^3*A^9/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9)) + ...
(3) A(x) = 1 + x*A^3/(1-x*A^3)^2 + x^4*A^12/((1-x*A^3)*(1-x^2*A^6))^2 + x^9*A^27/((1-x*A^3)*(1-x^2*A^6)*(1-x^3*A^9))^2 + ...
From Peter Bala, Nov 12 2024: (Start)
A(x) = ( 1/x * series_reversion(x/P(x)^3) )^(1/3).
A(x) = the third iterate I^3(P(x)), where the operator I is defined by I(f(x)) = 1/x * series_reversion(x/f(x)). See the Example section. (Note that I(P(x)) is the g.f. of A109085 and I^2(P(x)) is the g.f. of A171802.) (End)

A196151 G.f. satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^2).

Original entry on oeis.org

1, 1, 3, 11, 43, 179, 778, 3491, 16051, 75235, 358170, 1727124, 8418266, 41408344, 205289265, 1024737905, 5145933602, 25978844478, 131773584768, 671239285119, 3432304205872, 17611565623950, 90652384728648, 467963720803022, 2422110238147351
Offset: 0

Views

Author

Paul D. Hanna, Sep 28 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 43*x^4 + 179*x^5 + 778*x^6 + ...
where
(0) A(x) = (1+x*A(x)^2) * (1+x^2*A(x)^2) * (1+x^3*A(x)^2) * (1+x^4*A(x)^2) * ...
(1) A(x) = 1 + x*A(x)^2/(1-x) + x^3*A(x)^4/((1-x)*(1-x^2)) + x^6*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
(2) A(x) = (1+x*A(x)^2) + x^2*A(x)^2*(1 + x^3*A(x)^2)*(1+x*A(x)^2)/(1-x) + x^7*A(x)^4*(1 + x^5*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)/((1-x)*(1-x^2)) + x^15*A(x)^6*(1 + x^7*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)*(1+x^3*A(x)^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[1 + x^k*A[x]^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[-r*s*(1 + s^2) * Derivative[0, 1][QPochhammer][-s^2, r] / (8*Pi*(s^2 + (1 + s^2)^2 * QPolyGamma[1, Log[-s^2]/Log[r], r]/ Log[r]^2))]} /. FindRoot[{QPochhammer[-s^2, r] == s*(1 + s^2), 1/2 + s^2/(1 + s^2) + (Log[1 - r] + QPolyGamma[0, Log[-s^2]/Log[r], r])/Log[r] == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=prod(m=1, n, (1+A^2*x^m+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(m+1)/2)*A^(2*m)/prod(k=1, m, 1-x^k +x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(3*m+1)/2)*A^(2*m)*(1 + x^(2*m+1)*A^2)*prod(k=1, m, (1+A^2*x^k)/(1-x^k+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies:
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2)*A(x)^(2*n) / Product_{k=1..n} (1-x^k).
(2) A(x) = Sum_{n>=0} x^(n*(3n+1)/2)*A(x)^(2*n)*(1 + x^(2n+1)*A(x)^2)*Product_{k=1..n} (1 + x^k*A(x)^2)/(1-x^k) due to Sylvester's identity.
a(n) ~ c * d^n / n^(3/2), where d = 5.5051727555189932106045782067309509... and c = 0.4987046473347092789085107139372... - Vaclav Kotesovec, Sep 28 2023
Radius of convergence r = 0.181647342310464199522927295317... = 1/d and A(r) = 1.82512871645978495662055342941... satisfy A(r) = 1 / sqrt( Sum_{n>=1} 2*r^n/(1 + r^n*A(r)^2) ) and A(r) = Product_{n>=1} (1 + r^n*A(r)^2). - Paul D. Hanna, Mar 03 2024

A206637 G.f. satisfies: A(x) = Sum_{n>=0} 2^n*A(x)^n * x^(n^2) / Product_{k=1..n} (1 - 2*x^k)*(1 - x^k*A(x)).

Original entry on oeis.org

1, 2, 10, 50, 266, 1466, 8370, 49090, 294458, 1798794, 11156074, 70069514, 444822530, 2849764698, 18401517066, 119640989514, 782575127258, 5146252178882, 34003440381186, 225635772455882, 1503017848153914, 10046960505610082, 67372689978768714, 453099298491559554
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 10*x^2 + 50*x^3 + 266*x^4 + 1466*x^5 + 8370*x^6 +...
where the g.f. satisfies:
(0) A(x) = 1 + 2*x*A(x)/((1-2*x)*(1-x*A(x))) + 4*x^4*A(x)^2/((1-2*x)*(1-2*x^2)*(1-x*A(x))*(1-x^2*A(x))) + 8*x^9*A(x)^3/((1-2*x)*(1-2*x^2)*(1-2*x^3)*(1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
(1) A(x) = 1 + 2*x*A(x)/(1-2*x) + 2*x^2*A(x)^2/((1-2*x)*(1-2*x^2)) + 2*x^3*A(x)^3/((1-2*x)*(1-2*x^2)*(1-2*x^3)) +...
(2) A(x) = 1 + 2*x*A(x)/(1-x*A(x)) + 4*x^2*A(x)/((1-x*A(x))*(1-x^2*A(x))) + 8*x^3*A(x)/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*2^m*A^m/prod(k=1, m, (1-2*x^k)*(1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2*x^m*A^m/prod(k=1, m, (1-2*x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 2^m*x^m*A/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    for(n=0,35,print1(a(n),","))

Formula

G.f. satisfies the identities:
(1) A(x) = 1 + Sum_{n>=1} 2*x^n*A(x)^n / Product_{k=1..n} (1 - 2*x^k).
(2) A(x) = 1 + Sum_{n>=1} 2^n*x^n*A(x) / Product_{k=1..n} (1 - x^k*A(x)).

A210043 G.f. A(x) satisfies: A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(n-1)).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 73, 211, 629, 1912, 5913, 18531, 58739, 187963, 606416, 1970326, 6441623, 21175056, 69946082, 232054411, 772886274, 2583325555, 8662455004, 29132638803, 98240253058, 332105822674, 1125273780474, 3820859749502, 12999287203624
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 73*x^6 + 211*x^7 +...
The g.f. satisfies the q-series identities:
(0) A(x) = 1/( (1-x) * (1-x^2*A(x)) * (1-x^3*A(x)^2) * (1-x^4*A(x)^3) *...).
(1) A(x) = 1 + x/(1-x*A(x)) + x^2/((1-x*A(x))*(1-x^2*A(x)^2)) + x^3/((1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(2) A(x) = 1 + x/(1-x) + x^2*A(x)/((1-x)*(1-x^2*A(x))) + x^3*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)) +...
(3) A(x) = 1 + x/((1-x)*(1-x*A(x))) + x^4*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x*A(x))*(1-x^2*A(x)^2)) + x^9*A(x)^6/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(4) A(x) = exp( x/(1-x*A(x)) + x^2/(2*(1-x^2*A(x)^2)) + x^3/(3*(1-x^3*A(x)^3)) +...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x)/Product[1 - x^k*A[x]^(k - 1), {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, -s*Log[r*s]* Sqrt[(-1 + r*s)*(((-2 + s)*Log[r*s] + (-1 + s)*Log[1 - r*s] + (-1 + s)*QPolyGamma[0, Log[1/s]/Log[r*s], r*s])/ (2* Pi*(Log[r*s]*(4*r*(-1 + s)*s*ArcTanh[1 - 2*r*s] + 2*(-3 + s)*(-1 + r*s)*Log[r*s]^2 + (2 - 2*s + (-5 + 3*s)*(-1 + r*s)*Log[r*s])* Log[1 - r*s] + (-1 + s)*(-1 + r*s)*Log[1 - r*s]^2) + (-1 + r*s)* Log[r*s]*((-5 + 3*s)*Log[r*s] + 2*(-1 + s)*(1 + Log[1 - r*s]))* QPolyGamma[0, Log[1/s]/Log[r*s], r*s] + (-1 + s)*(-1 + r*s)*Log[r*s]* QPolyGamma[0, Log[1/s]/Log[r*s], r*s]^2 + (-1 + r*s)*((-1 + s)*(2*Log[1/s] + Log[r*s])* QPolyGamma[1, Log[1/s]/Log[r*s], r*s] + r*s*Log[r*s]^2*((-r)*s^3*Log[r*s]* Derivative[0, 2][QPochhammer][1/s, r*s] - 2*(-1 + s)* Derivative[0, 0, 1][QPolyGamma][0, Log[1/s]/Log[r*s], r*s])))))]} /. FindRoot[{s - 1 == s^2*QPochhammer[1/s, r*s], (s - 2)/s + ((s - 1)*(Log[1 - r*s] + QPolyGamma[0, Log[1/s]/Log[r*s], r*s]))/(s*Log[r*s]) + r*s^2*Derivative[0, 1][QPochhammer][1/s, r*s] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^(k-1)+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m-1)/prod(k=1, m, (1-x^k*A^(k-1)+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/prod(k=1, m, (1-x^k*A^k +x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(m^2-m)/prod(k=1, m, (1-x^k*A^(k-1))*(1-x^k*A^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m/(1-x^m*A^m +x*O(x^n))))); polcoeff(A, n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n / Product_{k=1..n} (1 - x^k*A(x)^k).
(2) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(n-1) / Product_{k=1..n} (1 - x^k*A(x)^(k-1)).
(3) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^(n^2-n) / [Product_{k=1..n} (1 - x^k*A(x)^(k-1))*(1 - x^k*A(x)^k)].
(4) A(x) = exp( Sum_{n>=1} x^n/n / (1 - x^n*A(x)^n) ).
a(n) ~ c * d^n / n^(3/2), where d = 3.58867546756663411130633387... and c = 0.57644814981246742030509... - Vaclav Kotesovec, Aug 12 2021

A298260 G.f. A(x) satisfies A(x) = Product_{k>=1} 1/(1 + x^k*A(x)).

Original entry on oeis.org

1, -1, 1, -3, 8, -22, 62, -182, 550, -1694, 5294, -16758, 53635, -173260, 564129, -1849448, 6099972, -20227036, 67390803, -225485432, 757361764, -2552692848, 8631144354, -29268108530, 99511629658, -339167845294, 1158607479710, -3966129297519, 13603228472518
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			G.f. A(x) = 1 - x + x^2 - 3*x^3 + 8*x^4 - 22*x^5 + 62*x^6 - 182*x^7 + 550*x^8 - 1694*x^9 + ...
G.f. A(x) satisfies A(x) = 1/((1 + x*A(x)) * (1 + x^2*A(x)) * (1 + x^3*A(x)) * ... ).
		

Crossrefs

A298261 G.f. A(x) satisfies A(x) = Product_{k>=1} (1 - x^k*A(x)).

Original entry on oeis.org

1, -1, 0, 1, -2, 2, -1, -1, 4, -9, 16, -19, 1, 59, -158, 229, -129, -297, 1066, -1878, 1992, -216, -4862, 13912, -24258, 25406, 4162, -90120, 233708, -359262, 264319, 360325, -1745699, 3624263, -4623550, 1795485, 8918014, -29893776, 55251854, -61018833, -1455525
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			G.f. A(x) = 1 - x + x^3 - 2*x^4 + 2*x^5 - x^6 - x^7 + 4*x^8 - 9*x^9 + ...
G.f. A(x) satisfies A(x) = (1 - x*A(x)) * (1 - x^2*A(x)) * (1 - x^3*A(x)) * ...
		

Crossrefs

Showing 1-10 of 16 results. Next