cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A145268 G.f. A(x) satisfies A(x) = 1/Product_{k>0} (1-x^k*A(x)).

Original entry on oeis.org

1, 1, 3, 9, 30, 104, 378, 1414, 5424, 21208, 84244, 339008, 1379173, 5663078, 23439651, 97692524, 409650348, 1727034770, 7315915371, 31124324364, 132926220818, 569695276362, 2449395461726, 10561857055472, 45664873651576
Offset: 0

Views

Author

Vladeta Jovovic, Oct 05 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 104*x^5 + 378*x^6 +...
The g.f. satisfies:
(0) A(x) = 1/((1-x*A(x)) * (1-x^2*A(x)) * (1-x^3*A(x)) *...).
(1) A(x) = 1 + x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-x^2)) + x^3*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) +...
(2) A(x) = 1 + x*A(x)/[(1-x)*(1-x*A(x))] + x^4*A(x)^2/[(1-x)*(1-x^2)*(1-x*A(x))*(1-x^2*A(x))] + x^9*A(x)^3/[(1-x)*(1-x^2)*(1-x^3)*(1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))] +...
(3) A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)/((1-x*A(x))*(1-x^2*A(x))) + x^3*A(x)/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
(4) A(x) = exp( x*A(x)/(1-x) + x^2*A(x)^2/(2*(1-x^2)) + x^3*A(x)^3/(3*(1-x^3)) +...).
		

Crossrefs

Programs

  • Mathematica
    terms = 25; A[] = 0; Do[A[x] = 1/Product[1-x^k A[x], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[(r*(s-1)*s^3*Derivative[0, 1][QPochhammer][s, r]) / (2*Pi*((s-1)^2 * (QPolyGamma[1, Log[s]/Log[r], r]/Log[r]^2) - s))]} /. FindRoot[{s*QPochhammer[s, r] == 1 - s, 1 + s/(1 - s) == (Log[1 - r] + QPolyGamma[0, Log[s]/Log[r], r])/Log[r]}, {r, 1/5}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/prod(k=1,n,(1-x^k*A+x*O(x^n))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m/prod(k=1,m,(1-x^k+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,sqrtint(n+1),x^(m^2)*A^m/prod(k=1,m,(1-x^k)*(1-x^k*A+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)} /* Paul D. Hanna, Feb 11 2012 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1,n,x^m*A^m/(m*(1-x^m +x*O(x^n))))));polcoeff(A,n)} /* Paul D. Hanna, Mar 16 2012 */

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^n / Product_{k=1..n} (1-x^k) due to an identity of Euler. - Paul D. Hanna, May 21 2011
(2) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^n / [Product_{k=1..n} (1-x^k)*(1-x^k*A(x))] due to Cauchy's identity. - Paul D. Hanna, May 21 2011
(3) A(x) = 1 + Sum_{n>=1} x^n*A(x) / Product_{k=1..n} (1 - x^k*A(x)) due to an identity of Euler. - Paul D. Hanna, Feb 11 2012
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^n / (n*(1-x^n)) ). - Paul D. Hanna, Mar 16 2012
a(n) ~ c * d^n / n^(3/2), where d = 4.6001032462748928128832068474594... and c = 0.695157167276255862302452181... - Vaclav Kotesovec, Aug 12 2021
Radius of convergence r = 0.2173864251437807911560951549077... = 1/d and A(r) = 2.126717513863405832814236571639... satisfy (a) A(r) = 1 / Sum_{n>=1} r^n/(1 - r^n*A(r)) and (b) A(r) = 1 / Product_{n>=1} (1 - r^n*A(r)). - Paul D. Hanna, Mar 02 2024

Extensions

More terms from Max Alekseyev, Jan 31 2010

A196150 G.f. satisfies A(x) = 1/Product_{n>=1} (1 - x^n*A(x)^2).

Original entry on oeis.org

1, 1, 4, 18, 92, 505, 2922, 17541, 108270, 682823, 4380942, 28504466, 187636994, 1247375147, 8362420498, 56471709841, 383790966537, 2622982116829, 18016055333571, 124296340608870, 860986586024343, 5985590694574930, 41749023026002831
Offset: 0

Views

Author

Paul D. Hanna, Sep 28 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 92*x^4 + 505*x^5 + 2922*x^6 + ...
where
(0) A(x) = 1/((1-x*A(x)^2) * (1-x^2*A(x)^2) * (1-x^3*A(x)^2) * ...).
(1) A(x) = 1 + x*A(x)^2/(1-x) + x^2*A(x)^4/((1-x)*(1-x^2)) + x^3*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A(x) = 1 + x*A(x)^2/[(1-x)*(1-x*A(x)^2)] + x^4*A(x)^4/[(1-x)*(1-x^2)*(1-x*A(x)^2)*(1-x^2*A(x)^2)] + x^9*A(x)^6/[(1-x)*(1-x^2)*(1-x^3)*(1-x*A(x)^2)*(1-x^2*A(x)^2)*(1-x^3*A(x)^2)] + ...
(3) A(x) = 1 + x*A(x)^2/(1-x*A(x)^2) + x^2*A(x)^2/((1-x*A(x)^2)*(1-x^2*A(x)^2)) + x^3*A(x)^2/((1-x*A(x)^2)*(1-x^2*A(x)^2)*(1-x^3*A(x)^2)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/Product[1 - x^k*A[x]^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[r*s^3 * (s^2 - 1) * Derivative[0, 1][QPochhammer][s^2, r] / (8*Pi*((s^2 - 1)^2*(QPolyGamma[1, 2*Log[s]/Log[r], r] / Log[r]^2) - s^2))]} /. FindRoot[{(1 - s^2)/QPochhammer[s^2, r] == s, 1/2 + s^2/(1 - s^2) == (Log[1 - r] + QPolyGamma[0, 2*Log[s]/Log[r], r]) / Log[r]}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^2+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(2*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(2*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^2+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^2/prod(k=1, m, (1-x^k*A^2+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(2*n) / Product_{k=1..n} (1-x^k) due to an identity of Euler.
(2) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^(2*n)/[Product_{k=1..n} (1-x^k)*(1-x^k*A(x)^2)] due to Cauchy's identity.
(3) A(x) = 1 + Sum_{n>=1} x^n*A(x)^2 / Product_{k=1..n} (1 - x^k*A(x)^2).
a(n) ~ c * d^n / n^(3/2), where d = 7.4702934491577480082... and c = 0.270144986991156076... - Vaclav Kotesovec, Aug 12 2021
Radius of convergence r = 0.1338635499135240586... = 1/d and A(r) = 1.5228379370493260575... satisfy A(r) = 1 / sqrt( Sum_{n>=1} 2*r^n/(1 - r^n*A(r)^2) ) and A(r) = 1 / Product_{n>=1} (1 - r^n*A(r)^2). - Paul D. Hanna, Mar 02 2024

A301456 G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x)^k)^k.

Original entry on oeis.org

1, 1, 3, 12, 49, 217, 1006, 4810, 23576, 117812, 597937, 3073874, 15972678, 83758809, 442681653, 2355678968, 12610759255, 67868269712, 366979432955, 1992755590086, 10862329206524, 59414599714958, 326009477088080, 1793977307978268, 9898072238695390, 54744525395860053, 303463833091357785
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 3*x^2 + 12*x^3 + 49*x^4 + 217*x^5 + 1006*x^6 + 4810*x^7 + 23576*x^8 + 117812*x^9 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * (1 + x^4*A(x)^4)^4 * ...
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 141*x^4/4 + 751*x^5/5 + 4064*x^6/6 + 22198*x^7/7 + 122381*x^8/8 + ... + A270922(n)*x^n/n + ...
		

Crossrefs

Formula

G.f. A(x) satisfies: A(x) = exp(Sum_{k>=1} (-1)^(k+1)*x^k*A(x)^k/(k*(1 - x^k*A(x)^k)^2)).

A190862 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))/(1 - x^n*A(x)).

Original entry on oeis.org

1, 2, 8, 36, 174, 888, 4716, 25808, 144568, 825030, 4780176, 28045860, 166295716, 994959560, 5999349896, 36420226288, 222415222446, 1365445230212, 8422174103796, 52168047039764, 324366739546304, 2023789526326096
Offset: 0

Views

Author

Paul D. Hanna, May 21 2011

Keywords

Comments

Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)); here q=x, x=x*A(x), y=1, z=0.

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 174*x^4 + 888*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)/(1-x*A) * (1+x^2*A)/(1-x^2*A) * (1+x^3*A)/(1-x^3*A) * ...
(1) A = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A/((1-x*A)*(1-x)) + 2*x^3*A^2*(1+x)/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 2*x^6*A^3*(1+x)*(1+x^2)/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ... (cf. A192619)
		

Crossrefs

Cf. A145267, A145268, A190861, A192619 (g.f. A(x)^2), A192621.

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])/(1 - x^k*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
    (* Calculation of constant d: *) 1/r /. FindRoot[{(s-1)*QPochhammer[-s, r] == -s*(s+1) * QPochhammer[s, r], (s^2 - 1)*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]) + Log[r]*(s^2 - 2*s - 1) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 26 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(m=1,n,(1+x^m*A)/(1-x^m*A+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^m*prod(k=1,m,(1+x^(k-1))/((1-x^k*A+x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k))))));polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^n*Product_{k=1..n} (1+x^(k-1))/(1-x^k) due to the q-binomial theorem.
(2) A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2)*A(x)^n*Product_{k=1..n} (1+x^(k-1))/((1-x^k*A(x))*(1-x^k)) due to the Heine identity.
(3) A(x)^2 = 1 + Sum_{n>=1} x^n*A(x)^n * Product_{k=1..n} (1+x^(k-1))^2/((1-x^k*A(x))*(1-x^k)) due to the Heine identity.
a(n) ~ c * d^n / n^(3/2), where d = 6.6934289011143535333002543297069340451347... and c = 0.946606599119645056034760125205426820822370610602636232678... - Vaclav Kotesovec, Sep 26 2023
Radius of convergence r = 0.149400257293166331446262618504038357688... = 1/d and A(r) = 2.500666835731534833961673247439001530869... satisfy A(r) = 1 / Sum_{n>=1} 2*r^n/(1 - r^(2*n)*A(r)^2) and A(r) = Product_{n>=1} (1 + r^n*A(r))/(1 - r^n*A(r)). - Paul D. Hanna, Mar 02 2024

A190822 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n) * (1 + x^(2n)*A(x)).

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 53, 104, 208, 415, 836, 1690, 3434, 7004, 14342, 29460, 60707, 125443, 259883, 539689, 1123226, 2342493, 4894590, 10245321, 21481047, 45108768, 94863801, 199772929, 421245065, 889331420, 1879723964, 3977402460, 8424718846
Offset: 0

Views

Author

Paul D. Hanna, May 21 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 + ...
G.f.: A(x) = (1+x)*(1+x^2*A(x)) * (1+x^2)*(1+x^4*A(x)) * (1+x^3)*(1+x^6*A(x)) * ...
G.f.: A(x) = 1 + x*(1+x*A(x))/(1-x) + x^3*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^6*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Cf. A145267.

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = Product[(1 + x^k)*(1 + x^(2*k)*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Mar 03 2024 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(-r*s*(1 + s) * Log[r^2]^2 * (s*(1 + s)*Derivative[0, 1][QPochhammer][-1, r] + r*QPochhammer[-1, r]^2 * Derivative[0, 1][QPochhammer][-s, r^2]))/(2*Pi * QPochhammer[-1, r]* (s*Log[r^2]^2 + (1 + s)^2 * QPolyGamma[1, Log[-s]/Log[r^2], r^2]))]} /. FindRoot[{2*s*(1 + s) == QPochhammer[-1, r]*QPochhammer[-s, r^2], 1 + s/(1 + s) + (Log[1 - r^2] + QPolyGamma[0, Log[-s]/Log[r^2], r^2])/Log[r^2] == 0}, {r, 1/2}, {s, 8}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Mar 03 2024 *)
  • PARI
    {a(n) = my(A=1+x);for(i=1,n, A = prod(m=1,n, (1 + x^m) * (1 + x^(2*m)*A+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n) = my(A=1+x);for(i=1,n, A = 1 + sum(m=1,sqrtint(2*n),x^(m*(m+1)/2) * prod(k=1,m, (1 + A*x^k)/(1 - x^k +x*O(x^n))))); polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2) * Product_{k=1..n} (1 + x^k*A(x)) / (1 - x^k) due to a Lebesgue identity.
From Vaclav Kotesovec, Mar 03 2024: (Start)
Let A(x) = y, then 2*y*(1 + y) = QPochhammer(-1, x) * QPochhammer(-y, x^2).
a(n) ~ c * d^n / n^(3/2), where d = 2.20229791253644493239805950840417681972879718454582447550768622636671... and c = 9.92694112477002167508700773789825154871250555780774205172995613775...
Radius of convergence:
r = 1/d = 0.45407117461609608946909851977877786178200148047136427660297778018...
A(r) = s = 8.6584215712749049134273598177515922912152713325328273868580739614...
(End)
The values r and A(r) given above also satisfy A(r) = 1 / Sum_{n>=1} r^(2*n)/(1 + r^(2*n)*A(r)). - Paul D. Hanna, Mar 03 2024

A196151 G.f. satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^2).

Original entry on oeis.org

1, 1, 3, 11, 43, 179, 778, 3491, 16051, 75235, 358170, 1727124, 8418266, 41408344, 205289265, 1024737905, 5145933602, 25978844478, 131773584768, 671239285119, 3432304205872, 17611565623950, 90652384728648, 467963720803022, 2422110238147351
Offset: 0

Views

Author

Paul D. Hanna, Sep 28 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 43*x^4 + 179*x^5 + 778*x^6 + ...
where
(0) A(x) = (1+x*A(x)^2) * (1+x^2*A(x)^2) * (1+x^3*A(x)^2) * (1+x^4*A(x)^2) * ...
(1) A(x) = 1 + x*A(x)^2/(1-x) + x^3*A(x)^4/((1-x)*(1-x^2)) + x^6*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
(2) A(x) = (1+x*A(x)^2) + x^2*A(x)^2*(1 + x^3*A(x)^2)*(1+x*A(x)^2)/(1-x) + x^7*A(x)^4*(1 + x^5*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)/((1-x)*(1-x^2)) + x^15*A(x)^6*(1 + x^7*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)*(1+x^3*A(x)^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[1 + x^k*A[x]^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[-r*s*(1 + s^2) * Derivative[0, 1][QPochhammer][-s^2, r] / (8*Pi*(s^2 + (1 + s^2)^2 * QPolyGamma[1, Log[-s^2]/Log[r], r]/ Log[r]^2))]} /. FindRoot[{QPochhammer[-s^2, r] == s*(1 + s^2), 1/2 + s^2/(1 + s^2) + (Log[1 - r] + QPolyGamma[0, Log[-s^2]/Log[r], r])/Log[r] == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=prod(m=1, n, (1+A^2*x^m+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(m+1)/2)*A^(2*m)/prod(k=1, m, 1-x^k +x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(3*m+1)/2)*A^(2*m)*(1 + x^(2*m+1)*A^2)*prod(k=1, m, (1+A^2*x^k)/(1-x^k+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies:
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2)*A(x)^(2*n) / Product_{k=1..n} (1-x^k).
(2) A(x) = Sum_{n>=0} x^(n*(3n+1)/2)*A(x)^(2*n)*(1 + x^(2n+1)*A(x)^2)*Product_{k=1..n} (1 + x^k*A(x)^2)/(1-x^k) due to Sylvester's identity.
a(n) ~ c * d^n / n^(3/2), where d = 5.5051727555189932106045782067309509... and c = 0.4987046473347092789085107139372... - Vaclav Kotesovec, Sep 28 2023
Radius of convergence r = 0.181647342310464199522927295317... = 1/d and A(r) = 1.82512871645978495662055342941... satisfy A(r) = 1 / sqrt( Sum_{n>=1} 2*r^n/(1 + r^n*A(r)^2) ) and A(r) = Product_{n>=1} (1 + r^n*A(r)^2). - Paul D. Hanna, Mar 03 2024

A210043 G.f. A(x) satisfies: A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(n-1)).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 73, 211, 629, 1912, 5913, 18531, 58739, 187963, 606416, 1970326, 6441623, 21175056, 69946082, 232054411, 772886274, 2583325555, 8662455004, 29132638803, 98240253058, 332105822674, 1125273780474, 3820859749502, 12999287203624
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 73*x^6 + 211*x^7 +...
The g.f. satisfies the q-series identities:
(0) A(x) = 1/( (1-x) * (1-x^2*A(x)) * (1-x^3*A(x)^2) * (1-x^4*A(x)^3) *...).
(1) A(x) = 1 + x/(1-x*A(x)) + x^2/((1-x*A(x))*(1-x^2*A(x)^2)) + x^3/((1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(2) A(x) = 1 + x/(1-x) + x^2*A(x)/((1-x)*(1-x^2*A(x))) + x^3*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)) +...
(3) A(x) = 1 + x/((1-x)*(1-x*A(x))) + x^4*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x*A(x))*(1-x^2*A(x)^2)) + x^9*A(x)^6/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(4) A(x) = exp( x/(1-x*A(x)) + x^2/(2*(1-x^2*A(x)^2)) + x^3/(3*(1-x^3*A(x)^3)) +...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x)/Product[1 - x^k*A[x]^(k - 1), {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, -s*Log[r*s]* Sqrt[(-1 + r*s)*(((-2 + s)*Log[r*s] + (-1 + s)*Log[1 - r*s] + (-1 + s)*QPolyGamma[0, Log[1/s]/Log[r*s], r*s])/ (2* Pi*(Log[r*s]*(4*r*(-1 + s)*s*ArcTanh[1 - 2*r*s] + 2*(-3 + s)*(-1 + r*s)*Log[r*s]^2 + (2 - 2*s + (-5 + 3*s)*(-1 + r*s)*Log[r*s])* Log[1 - r*s] + (-1 + s)*(-1 + r*s)*Log[1 - r*s]^2) + (-1 + r*s)* Log[r*s]*((-5 + 3*s)*Log[r*s] + 2*(-1 + s)*(1 + Log[1 - r*s]))* QPolyGamma[0, Log[1/s]/Log[r*s], r*s] + (-1 + s)*(-1 + r*s)*Log[r*s]* QPolyGamma[0, Log[1/s]/Log[r*s], r*s]^2 + (-1 + r*s)*((-1 + s)*(2*Log[1/s] + Log[r*s])* QPolyGamma[1, Log[1/s]/Log[r*s], r*s] + r*s*Log[r*s]^2*((-r)*s^3*Log[r*s]* Derivative[0, 2][QPochhammer][1/s, r*s] - 2*(-1 + s)* Derivative[0, 0, 1][QPolyGamma][0, Log[1/s]/Log[r*s], r*s])))))]} /. FindRoot[{s - 1 == s^2*QPochhammer[1/s, r*s], (s - 2)/s + ((s - 1)*(Log[1 - r*s] + QPolyGamma[0, Log[1/s]/Log[r*s], r*s]))/(s*Log[r*s]) + r*s^2*Derivative[0, 1][QPochhammer][1/s, r*s] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^(k-1)+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m-1)/prod(k=1, m, (1-x^k*A^(k-1)+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/prod(k=1, m, (1-x^k*A^k +x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(m^2-m)/prod(k=1, m, (1-x^k*A^(k-1))*(1-x^k*A^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m/(1-x^m*A^m +x*O(x^n))))); polcoeff(A, n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n / Product_{k=1..n} (1 - x^k*A(x)^k).
(2) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(n-1) / Product_{k=1..n} (1 - x^k*A(x)^(k-1)).
(3) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^(n^2-n) / [Product_{k=1..n} (1 - x^k*A(x)^(k-1))*(1 - x^k*A(x)^k)].
(4) A(x) = exp( Sum_{n>=1} x^n/n / (1 - x^n*A(x)^n) ).
a(n) ~ c * d^n / n^(3/2), where d = 3.58867546756663411130633387... and c = 0.57644814981246742030509... - Vaclav Kotesovec, Aug 12 2021

A298260 G.f. A(x) satisfies A(x) = Product_{k>=1} 1/(1 + x^k*A(x)).

Original entry on oeis.org

1, -1, 1, -3, 8, -22, 62, -182, 550, -1694, 5294, -16758, 53635, -173260, 564129, -1849448, 6099972, -20227036, 67390803, -225485432, 757361764, -2552692848, 8631144354, -29268108530, 99511629658, -339167845294, 1158607479710, -3966129297519, 13603228472518
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			G.f. A(x) = 1 - x + x^2 - 3*x^3 + 8*x^4 - 22*x^5 + 62*x^6 - 182*x^7 + 550*x^8 - 1694*x^9 + ...
G.f. A(x) satisfies A(x) = 1/((1 + x*A(x)) * (1 + x^2*A(x)) * (1 + x^3*A(x)) * ... ).
		

Crossrefs

A298261 G.f. A(x) satisfies A(x) = Product_{k>=1} (1 - x^k*A(x)).

Original entry on oeis.org

1, -1, 0, 1, -2, 2, -1, -1, 4, -9, 16, -19, 1, 59, -158, 229, -129, -297, 1066, -1878, 1992, -216, -4862, 13912, -24258, 25406, 4162, -90120, 233708, -359262, 264319, 360325, -1745699, 3624263, -4623550, 1795485, 8918014, -29893776, 55251854, -61018833, -1455525
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			G.f. A(x) = 1 - x + x^3 - 2*x^4 + 2*x^5 - x^6 - x^7 + 4*x^8 - 9*x^9 + ...
G.f. A(x) satisfies A(x) = (1 - x*A(x)) * (1 - x^2*A(x)) * (1 - x^3*A(x)) * ...
		

Crossrefs

A302171 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x))^k.

Original entry on oeis.org

1, 1, 4, 14, 54, 213, 880, 3724, 16143, 71227, 319067, 1447160, 6633530, 30682425, 143028870, 671293632, 3169572659, 15044993968, 71752624923, 343658572717, 1652266087698, 7971518032791, 38581202763318, 187269381724629, 911404238805468, 4446493502832481, 21742327471261176
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 02 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 14*x^3 + 54*x^4 + 213*x^5 + 880*x^6 + 3724*x^7 + 16143*x^8 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x))^2 * (1 - x^3*A(x))^3 * ...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/Product[(1 - x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 5.177446537296361283814259811908762546749... and c = 0.81395777803098291048009263980507199... - Vaclav Kotesovec, Sep 27 2023
Radius of convergence r = 0.1931454033945844258723936803941781838... = 1/d and A(r) = 2.2252305561396523944672847657756264073... satisfy (1) A(r) = 1 / Sum_{n>=1} n*r^n/(1 - r^n*A(r)) and (2) A(r) = 1 / Product_{n>=1} (1 - r^n*A(r))^n. - Paul D. Hanna, Mar 02 2024
Showing 1-10 of 14 results. Next