A145268
G.f. A(x) satisfies A(x) = 1/Product_{k>0} (1-x^k*A(x)).
Original entry on oeis.org
1, 1, 3, 9, 30, 104, 378, 1414, 5424, 21208, 84244, 339008, 1379173, 5663078, 23439651, 97692524, 409650348, 1727034770, 7315915371, 31124324364, 132926220818, 569695276362, 2449395461726, 10561857055472, 45664873651576
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 104*x^5 + 378*x^6 +...
The g.f. satisfies:
(0) A(x) = 1/((1-x*A(x)) * (1-x^2*A(x)) * (1-x^3*A(x)) *...).
(1) A(x) = 1 + x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-x^2)) + x^3*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) +...
(2) A(x) = 1 + x*A(x)/[(1-x)*(1-x*A(x))] + x^4*A(x)^2/[(1-x)*(1-x^2)*(1-x*A(x))*(1-x^2*A(x))] + x^9*A(x)^3/[(1-x)*(1-x^2)*(1-x^3)*(1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))] +...
(3) A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)/((1-x*A(x))*(1-x^2*A(x))) + x^3*A(x)/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
(4) A(x) = exp( x*A(x)/(1-x) + x^2*A(x)^2/(2*(1-x^2)) + x^3*A(x)^3/(3*(1-x^3)) +...).
-
terms = 25; A[] = 0; Do[A[x] = 1/Product[1-x^k A[x], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
(* Calculation of constants {d,c}: *) {1/r, Sqrt[(r*(s-1)*s^3*Derivative[0, 1][QPochhammer][s, r]) / (2*Pi*((s-1)^2 * (QPolyGamma[1, Log[s]/Log[r], r]/Log[r]^2) - s))]} /. FindRoot[{s*QPochhammer[s, r] == 1 - s, 1 + s/(1 - s) == (Log[1 - r] + QPolyGamma[0, Log[s]/Log[r], r])/Log[r]}, {r, 1/5}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=1/prod(k=1,n,(1-x^k*A+x*O(x^n))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m/prod(k=1,m,(1-x^k+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,sqrtint(n+1),x^(m^2)*A^m/prod(k=1,m,(1-x^k)*(1-x^k*A+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)} /* Paul D. Hanna, Feb 11 2012 */
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1,n,x^m*A^m/(m*(1-x^m +x*O(x^n))))));polcoeff(A,n)} /* Paul D. Hanna, Mar 16 2012 */
A196150
G.f. satisfies A(x) = 1/Product_{n>=1} (1 - x^n*A(x)^2).
Original entry on oeis.org
1, 1, 4, 18, 92, 505, 2922, 17541, 108270, 682823, 4380942, 28504466, 187636994, 1247375147, 8362420498, 56471709841, 383790966537, 2622982116829, 18016055333571, 124296340608870, 860986586024343, 5985590694574930, 41749023026002831
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 92*x^4 + 505*x^5 + 2922*x^6 + ...
where
(0) A(x) = 1/((1-x*A(x)^2) * (1-x^2*A(x)^2) * (1-x^3*A(x)^2) * ...).
(1) A(x) = 1 + x*A(x)^2/(1-x) + x^2*A(x)^4/((1-x)*(1-x^2)) + x^3*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A(x) = 1 + x*A(x)^2/[(1-x)*(1-x*A(x)^2)] + x^4*A(x)^4/[(1-x)*(1-x^2)*(1-x*A(x)^2)*(1-x^2*A(x)^2)] + x^9*A(x)^6/[(1-x)*(1-x^2)*(1-x^3)*(1-x*A(x)^2)*(1-x^2*A(x)^2)*(1-x^3*A(x)^2)] + ...
(3) A(x) = 1 + x*A(x)^2/(1-x*A(x)^2) + x^2*A(x)^2/((1-x*A(x)^2)*(1-x^2*A(x)^2)) + x^3*A(x)^2/((1-x*A(x)^2)*(1-x^2*A(x)^2)*(1-x^3*A(x)^2)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = 1/Product[1 - x^k*A[x]^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
(* Calculation of constants {d,c}: *) {1/r, Sqrt[r*s^3 * (s^2 - 1) * Derivative[0, 1][QPochhammer][s^2, r] / (8*Pi*((s^2 - 1)^2*(QPolyGamma[1, 2*Log[s]/Log[r], r] / Log[r]^2) - s^2))]} /. FindRoot[{(1 - s^2)/QPochhammer[s^2, r] == s, 1/2 + s^2/(1 - s^2) == (Log[1 - r] + QPolyGamma[0, 2*Log[s]/Log[r], r]) / Log[r]}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^2+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(2*m)/prod(k=1, m, (1-x^k+x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(2*m)/prod(k=1, m, (1-x^k)*(1-x^k*A^2+x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^2/prod(k=1, m, (1-x^k*A^2+x*O(x^n))))); polcoeff(A, n)}
A301456
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 + x^k*A(x)^k)^k.
Original entry on oeis.org
1, 1, 3, 12, 49, 217, 1006, 4810, 23576, 117812, 597937, 3073874, 15972678, 83758809, 442681653, 2355678968, 12610759255, 67868269712, 366979432955, 1992755590086, 10862329206524, 59414599714958, 326009477088080, 1793977307978268, 9898072238695390, 54744525395860053, 303463833091357785
Offset: 0
G.f. A(x) = 1 + x + 3*x^2 + 12*x^3 + 49*x^4 + 217*x^5 + 1006*x^6 + 4810*x^7 + 23576*x^8 + 117812*x^9 + ...
G.f. A(x) satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x)^2)^2 * (1 + x^3*A(x)^3)^3 * (1 + x^4*A(x)^4)^4 * ...
log(A(x)) = x + 5*x^2/2 + 28*x^3/3 + 141*x^4/4 + 751*x^5/5 + 4064*x^6/6 + 22198*x^7/7 + 122381*x^8/8 + ... + A270922(n)*x^n/n + ...
A190862
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))/(1 - x^n*A(x)).
Original entry on oeis.org
1, 2, 8, 36, 174, 888, 4716, 25808, 144568, 825030, 4780176, 28045860, 166295716, 994959560, 5999349896, 36420226288, 222415222446, 1365445230212, 8422174103796, 52168047039764, 324366739546304, 2023789526326096
Offset: 0
G.f.: A(x) = 1 + 2*x + 8*x^2 + 36*x^3 + 174*x^4 + 888*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)/(1-x*A) * (1+x^2*A)/(1-x^2*A) * (1+x^3*A)/(1-x^3*A) * ...
(1) A = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A/((1-x*A)*(1-x)) + 2*x^3*A^2*(1+x)/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 2*x^6*A^3*(1+x)*(1+x^2)/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ... (cf. A192619)
-
nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x])/(1 - x^k*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{(s-1)*QPochhammer[-s, r] == -s*(s+1) * QPochhammer[s, r], (s^2 - 1)*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]) + Log[r]*(s^2 - 2*s - 1) == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 26 2023 *)
-
{a(n)=local(A=1+x);for(i=1,n,A=prod(m=1,n,(1+x^m*A)/(1-x^m*A+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^m*prod(k=1,m,(1+x^(k-1))/((1-x^k*A+x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^m*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k))))));polcoeff(A,n)}
A190822
G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n) * (1 + x^(2n)*A(x)).
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 27, 53, 104, 208, 415, 836, 1690, 3434, 7004, 14342, 29460, 60707, 125443, 259883, 539689, 1123226, 2342493, 4894590, 10245321, 21481047, 45108768, 94863801, 199772929, 421245065, 889331420, 1879723964, 3977402460, 8424718846
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 14*x^5 + 27*x^6 + ...
G.f.: A(x) = (1+x)*(1+x^2*A(x)) * (1+x^2)*(1+x^4*A(x)) * (1+x^3)*(1+x^6*A(x)) * ...
G.f.: A(x) = 1 + x*(1+x*A(x))/(1-x) + x^3*(1+x*A(x))*(1+x^2*A(x))/((1-x)*(1-x^2)) + x^6*(1+x*A(x))*(1+x^2*A(x))*(1+x^3*A(x))/((1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 40; A[] = 0; Do[A[x] = Product[(1 + x^k)*(1 + x^(2*k)*A[x]), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Mar 03 2024 *)
(* Calculation of constants {d,c}: *) Chop[{1/r, Sqrt[(-r*s*(1 + s) * Log[r^2]^2 * (s*(1 + s)*Derivative[0, 1][QPochhammer][-1, r] + r*QPochhammer[-1, r]^2 * Derivative[0, 1][QPochhammer][-s, r^2]))/(2*Pi * QPochhammer[-1, r]* (s*Log[r^2]^2 + (1 + s)^2 * QPolyGamma[1, Log[-s]/Log[r^2], r^2]))]} /. FindRoot[{2*s*(1 + s) == QPochhammer[-1, r]*QPochhammer[-s, r^2], 1 + s/(1 + s) + (Log[1 - r^2] + QPolyGamma[0, Log[-s]/Log[r^2], r^2])/Log[r^2] == 0}, {r, 1/2}, {s, 8}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Mar 03 2024 *)
-
{a(n) = my(A=1+x);for(i=1,n, A = prod(m=1,n, (1 + x^m) * (1 + x^(2*m)*A+x*O(x^n))));polcoeff(A,n)}
-
{a(n) = my(A=1+x);for(i=1,n, A = 1 + sum(m=1,sqrtint(2*n),x^(m*(m+1)/2) * prod(k=1,m, (1 + A*x^k)/(1 - x^k +x*O(x^n))))); polcoeff(A,n)}
A196151
G.f. satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^2).
Original entry on oeis.org
1, 1, 3, 11, 43, 179, 778, 3491, 16051, 75235, 358170, 1727124, 8418266, 41408344, 205289265, 1024737905, 5145933602, 25978844478, 131773584768, 671239285119, 3432304205872, 17611565623950, 90652384728648, 467963720803022, 2422110238147351
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 43*x^4 + 179*x^5 + 778*x^6 + ...
where
(0) A(x) = (1+x*A(x)^2) * (1+x^2*A(x)^2) * (1+x^3*A(x)^2) * (1+x^4*A(x)^2) * ...
(1) A(x) = 1 + x*A(x)^2/(1-x) + x^3*A(x)^4/((1-x)*(1-x^2)) + x^6*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
(2) A(x) = (1+x*A(x)^2) + x^2*A(x)^2*(1 + x^3*A(x)^2)*(1+x*A(x)^2)/(1-x) + x^7*A(x)^4*(1 + x^5*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)/((1-x)*(1-x^2)) + x^15*A(x)^6*(1 + x^7*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)*(1+x^3*A(x)^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
-
nmax = 30; A[] = 0; Do[A[x] = Product[1 + x^k*A[x]^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
(* Calculation of constants {d,c}: *) {1/r, Sqrt[-r*s*(1 + s^2) * Derivative[0, 1][QPochhammer][-s^2, r] / (8*Pi*(s^2 + (1 + s^2)^2 * QPolyGamma[1, Log[-s^2]/Log[r], r]/ Log[r]^2))]} /. FindRoot[{QPochhammer[-s^2, r] == s*(1 + s^2), 1/2 + s^2/(1 + s^2) + (Log[1 - r] + QPolyGamma[0, Log[-s^2]/Log[r], r])/Log[r] == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
-
{a(n) = my(A=1+x); for(i=1, n, A=prod(m=1, n, (1+A^2*x^m+x*O(x^n)))); polcoeff(A, n)}
-
{a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(m+1)/2)*A^(2*m)/prod(k=1, m, 1-x^k +x*O(x^n)))); polcoeff(A, n)}
-
{a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(3*m+1)/2)*A^(2*m)*(1 + x^(2*m+1)*A^2)*prod(k=1, m, (1+A^2*x^k)/(1-x^k+x*O(x^n))))); polcoeff(A, n)}
A210043
G.f. A(x) satisfies: A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(n-1)).
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 73, 211, 629, 1912, 5913, 18531, 58739, 187963, 606416, 1970326, 6441623, 21175056, 69946082, 232054411, 772886274, 2583325555, 8662455004, 29132638803, 98240253058, 332105822674, 1125273780474, 3820859749502, 12999287203624
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 73*x^6 + 211*x^7 +...
The g.f. satisfies the q-series identities:
(0) A(x) = 1/( (1-x) * (1-x^2*A(x)) * (1-x^3*A(x)^2) * (1-x^4*A(x)^3) *...).
(1) A(x) = 1 + x/(1-x*A(x)) + x^2/((1-x*A(x))*(1-x^2*A(x)^2)) + x^3/((1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(2) A(x) = 1 + x/(1-x) + x^2*A(x)/((1-x)*(1-x^2*A(x))) + x^3*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)) +...
(3) A(x) = 1 + x/((1-x)*(1-x*A(x))) + x^4*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x*A(x))*(1-x^2*A(x)^2)) + x^9*A(x)^6/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(4) A(x) = exp( x/(1-x*A(x)) + x^2/(2*(1-x^2*A(x)^2)) + x^3/(3*(1-x^3*A(x)^3)) +...).
-
nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x)/Product[1 - x^k*A[x]^(k - 1), {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
(* Calculation of constants {d,c}: *) {1/r, -s*Log[r*s]* Sqrt[(-1 + r*s)*(((-2 + s)*Log[r*s] + (-1 + s)*Log[1 - r*s] + (-1 + s)*QPolyGamma[0, Log[1/s]/Log[r*s], r*s])/ (2* Pi*(Log[r*s]*(4*r*(-1 + s)*s*ArcTanh[1 - 2*r*s] + 2*(-3 + s)*(-1 + r*s)*Log[r*s]^2 + (2 - 2*s + (-5 + 3*s)*(-1 + r*s)*Log[r*s])* Log[1 - r*s] + (-1 + s)*(-1 + r*s)*Log[1 - r*s]^2) + (-1 + r*s)* Log[r*s]*((-5 + 3*s)*Log[r*s] + 2*(-1 + s)*(1 + Log[1 - r*s]))* QPolyGamma[0, Log[1/s]/Log[r*s], r*s] + (-1 + s)*(-1 + r*s)*Log[r*s]* QPolyGamma[0, Log[1/s]/Log[r*s], r*s]^2 + (-1 + r*s)*((-1 + s)*(2*Log[1/s] + Log[r*s])* QPolyGamma[1, Log[1/s]/Log[r*s], r*s] + r*s*Log[r*s]^2*((-r)*s^3*Log[r*s]* Derivative[0, 2][QPochhammer][1/s, r*s] - 2*(-1 + s)* Derivative[0, 0, 1][QPolyGamma][0, Log[1/s]/Log[r*s], r*s])))))]} /. FindRoot[{s - 1 == s^2*QPochhammer[1/s, r*s], (s - 2)/s + ((s - 1)*(Log[1 - r*s] + QPolyGamma[0, Log[1/s]/Log[r*s], r*s]))/(s*Log[r*s]) + r*s^2*Derivative[0, 1][QPochhammer][1/s, r*s] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^(k-1)+x*O(x^n)))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m-1)/prod(k=1, m, (1-x^k*A^(k-1)+x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/prod(k=1, m, (1-x^k*A^k +x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(m^2-m)/prod(k=1, m, (1-x^k*A^(k-1))*(1-x^k*A^k+x*O(x^n))))); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m/(1-x^m*A^m +x*O(x^n))))); polcoeff(A, n)}
for(n=0,35,print1(a(n),", "))
A298260
G.f. A(x) satisfies A(x) = Product_{k>=1} 1/(1 + x^k*A(x)).
Original entry on oeis.org
1, -1, 1, -3, 8, -22, 62, -182, 550, -1694, 5294, -16758, 53635, -173260, 564129, -1849448, 6099972, -20227036, 67390803, -225485432, 757361764, -2552692848, 8631144354, -29268108530, 99511629658, -339167845294, 1158607479710, -3966129297519, 13603228472518
Offset: 0
G.f. A(x) = 1 - x + x^2 - 3*x^3 + 8*x^4 - 22*x^5 + 62*x^6 - 182*x^7 + 550*x^8 - 1694*x^9 + ...
G.f. A(x) satisfies A(x) = 1/((1 + x*A(x)) * (1 + x^2*A(x)) * (1 + x^3*A(x)) * ... ).
A298261
G.f. A(x) satisfies A(x) = Product_{k>=1} (1 - x^k*A(x)).
Original entry on oeis.org
1, -1, 0, 1, -2, 2, -1, -1, 4, -9, 16, -19, 1, 59, -158, 229, -129, -297, 1066, -1878, 1992, -216, -4862, 13912, -24258, 25406, 4162, -90120, 233708, -359262, 264319, 360325, -1745699, 3624263, -4623550, 1795485, 8918014, -29893776, 55251854, -61018833, -1455525
Offset: 0
G.f. A(x) = 1 - x + x^3 - 2*x^4 + 2*x^5 - x^6 - x^7 + 4*x^8 - 9*x^9 + ...
G.f. A(x) satisfies A(x) = (1 - x*A(x)) * (1 - x^2*A(x)) * (1 - x^3*A(x)) * ...
A302171
G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - x^k*A(x))^k.
Original entry on oeis.org
1, 1, 4, 14, 54, 213, 880, 3724, 16143, 71227, 319067, 1447160, 6633530, 30682425, 143028870, 671293632, 3169572659, 15044993968, 71752624923, 343658572717, 1652266087698, 7971518032791, 38581202763318, 187269381724629, 911404238805468, 4446493502832481, 21742327471261176
Offset: 0
G.f. A(x) = 1 + x + 4*x^2 + 14*x^3 + 54*x^4 + 213*x^5 + 880*x^6 + 3724*x^7 + 16143*x^8 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - x^2*A(x))^2 * (1 - x^3*A(x))^3 * ...).
-
nmax = 30; A[] = 0; Do[A[x] = 1/Product[(1 - x^k*A[x])^k, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 26 2023 *)
Showing 1-10 of 14 results.
Comments