cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A145268 G.f. A(x) satisfies A(x) = 1/Product_{k>0} (1-x^k*A(x)).

Original entry on oeis.org

1, 1, 3, 9, 30, 104, 378, 1414, 5424, 21208, 84244, 339008, 1379173, 5663078, 23439651, 97692524, 409650348, 1727034770, 7315915371, 31124324364, 132926220818, 569695276362, 2449395461726, 10561857055472, 45664873651576
Offset: 0

Views

Author

Vladeta Jovovic, Oct 05 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 104*x^5 + 378*x^6 +...
The g.f. satisfies:
(0) A(x) = 1/((1-x*A(x)) * (1-x^2*A(x)) * (1-x^3*A(x)) *...).
(1) A(x) = 1 + x*A(x)/(1-x) + x^2*A(x)^2/((1-x)*(1-x^2)) + x^3*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) +...
(2) A(x) = 1 + x*A(x)/[(1-x)*(1-x*A(x))] + x^4*A(x)^2/[(1-x)*(1-x^2)*(1-x*A(x))*(1-x^2*A(x))] + x^9*A(x)^3/[(1-x)*(1-x^2)*(1-x^3)*(1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))] +...
(3) A(x) = 1 + x*A(x)/(1-x*A(x)) + x^2*A(x)/((1-x*A(x))*(1-x^2*A(x))) + x^3*A(x)/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
(4) A(x) = exp( x*A(x)/(1-x) + x^2*A(x)^2/(2*(1-x^2)) + x^3*A(x)^3/(3*(1-x^3)) +...).
		

Crossrefs

Programs

  • Mathematica
    terms = 25; A[] = 0; Do[A[x] = 1/Product[1-x^k A[x], {k, 1, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[(r*(s-1)*s^3*Derivative[0, 1][QPochhammer][s, r]) / (2*Pi*((s-1)^2 * (QPolyGamma[1, Log[s]/Log[r], r]/Log[r]^2) - s))]} /. FindRoot[{s*QPochhammer[s, r] == 1 - s, 1 + s/(1 - s) == (Log[1 - r] + QPolyGamma[0, Log[s]/Log[r], r])/Log[r]}, {r, 1/5}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1/prod(k=1,n,(1-x^k*A+x*O(x^n))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^m/prod(k=1,m,(1-x^k+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,sqrtint(n+1),x^(m^2)*A^m/prod(k=1,m,(1-x^k)*(1-x^k*A+x*O(x^n)))));polcoeff(A,n)} /* Paul D. Hanna, May 21 2011 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)} /* Paul D. Hanna, Feb 11 2012 */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1,n,x^m*A^m/(m*(1-x^m +x*O(x^n))))));polcoeff(A,n)} /* Paul D. Hanna, Mar 16 2012 */

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^n / Product_{k=1..n} (1-x^k) due to an identity of Euler. - Paul D. Hanna, May 21 2011
(2) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^n / [Product_{k=1..n} (1-x^k)*(1-x^k*A(x))] due to Cauchy's identity. - Paul D. Hanna, May 21 2011
(3) A(x) = 1 + Sum_{n>=1} x^n*A(x) / Product_{k=1..n} (1 - x^k*A(x)) due to an identity of Euler. - Paul D. Hanna, Feb 11 2012
(4) A(x) = exp( Sum_{n>=1} x^n*A(x)^n / (n*(1-x^n)) ). - Paul D. Hanna, Mar 16 2012
a(n) ~ c * d^n / n^(3/2), where d = 4.6001032462748928128832068474594... and c = 0.695157167276255862302452181... - Vaclav Kotesovec, Aug 12 2021
Radius of convergence r = 0.2173864251437807911560951549077... = 1/d and A(r) = 2.126717513863405832814236571639... satisfy (a) A(r) = 1 / Sum_{n>=1} r^n/(1 - r^n*A(r)) and (b) A(r) = 1 / Product_{n>=1} (1 - r^n*A(r)). - Paul D. Hanna, Mar 02 2024

Extensions

More terms from Max Alekseyev, Jan 31 2010

A192621 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x)^2)/(1 - x^n*A(x)^2).

Original entry on oeis.org

1, 2, 12, 88, 726, 6456, 60392, 585792, 5838764, 59440250, 615431464, 6460681656, 68607630680, 735682014648, 7954732578032, 86635206695808, 949518438959574, 10464751843723840, 115904823140622164, 1289419736206548408, 14401729960605163272
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2011

Keywords

Comments

Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)); here q=x, x=x*A(x)^2, y=1, z=0.

Examples

			G.f.: A(x) = 1 + 2*x + 12*x^2 + 88*x^3 + 726*x^4 + 6456*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A^2)/(1-x*A^2) * (1+x^2*A^2)/(1-x^2*A^2) * (1+x^3*A^2)/(1-x^3*A^2) * ...
(1) A = 1 + 2*x*A^2/(1-x) + 2*x^2*A^4*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^6*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
(2) A = 1 + 2*x*A^2/((1-x*A^2)*(1-x)) + 2*x^3*A^4*(1+x)/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 2*x^6*A^6*(1+x)*(1+x^2)/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
(3) A^2 = 1 + 4*x*A^2/((1-x*A^2)*(1-x)) + 4*x^2*A^4*(1+x)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x)*(1-x^2)) + 4*x^3*A^6*(1+x)^2*(1+x^2)^2/((1-x*A^2)*(1-x^2*A^2)*(1-x^3*A^2)*(1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Cf. A192620 (g.f. A(x)^2), A192623, A190862, A196150, A196151.

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[(1 + x^k*A[x]^2)/(1 - x^k*A[x]^2), {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
    (* Calculation of constant d: *) 1/r /. FindRoot[{QPochhammer[-s^2, r] / QPochhammer[s^2, r] == s*((1 + s^2)/(1 - s^2)), QPolyGamma[0, Log[-s^2]/Log[r], r] - QPolyGamma[0, Log[s^2]/Log[r], r] == (2*(s^2/(s^4 - 1)) - 1/2) * Log[r]}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=prod(k=1,n,(1+x^k*A^2)/(1-x^k*A^2+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sqrt(1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))^2/((1-x^k*A^2 +x*O(x^n))*(1-x^k))))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^(m*(m+1)/2)*A^(2*m)*prod(k=1,m,(1+x^(k-1))/((1-x^k*A^2 +x*O(x^n))*(1-x^k)))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*A^(2*m)*prod(k=1,m,(1+x^(k-1))/(1-x^k+x*O(x^n)))) );polcoeff(A,n)}

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(2*n) * Product_{k=1..n} (1+x^(k-1))/(1-x^k), due to the q-binomial theorem.
(2) A(x) = 1 + Sum_{n>=1} x^(n*(n+1)/2)*A(x)^(2*n) * Product_{k=1..n} (1+x^(k-1))/((1-x^k*A(x)^2)*(1-x^k)), due to the Heine identity.
(3) A(x)^2 = 1 + Sum_{n>=1} x^n*A(x)^(2*n) * Product_{k=1..n} (1+x^(k-1))^2/((1-x^k*A(x)^2)*(1-x^k), due to the Heine identity.
Self-convolution yields A192620.
a(n) ~ c * d^n / n^(3/2), where d = 12.042513458183758627924432194393539477581... and c = 0.323075847195701225672585138139173170517867693... - Vaclav Kotesovec, Oct 04 2023
Radius of convergence r = 0.083039143238027913107320323917684421045... = 1/d and A(r) = 1.624363189835514855585723923742556266289... satisfy A(r) = 1 / sqrt( Sum_{n>=1} 4*r^n/(1 - r^(2*n)*A(r)^4) ) and A(r) = Product_{n>=1} (1 + r^n*A(r)^2)/(1 - r^n*A(r)^2). - Paul D. Hanna, Mar 02 2024

A196151 G.f. satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^2).

Original entry on oeis.org

1, 1, 3, 11, 43, 179, 778, 3491, 16051, 75235, 358170, 1727124, 8418266, 41408344, 205289265, 1024737905, 5145933602, 25978844478, 131773584768, 671239285119, 3432304205872, 17611565623950, 90652384728648, 467963720803022, 2422110238147351
Offset: 0

Views

Author

Paul D. Hanna, Sep 28 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 43*x^4 + 179*x^5 + 778*x^6 + ...
where
(0) A(x) = (1+x*A(x)^2) * (1+x^2*A(x)^2) * (1+x^3*A(x)^2) * (1+x^4*A(x)^2) * ...
(1) A(x) = 1 + x*A(x)^2/(1-x) + x^3*A(x)^4/((1-x)*(1-x^2)) + x^6*A(x)^6/((1-x)*(1-x^2)*(1-x^3)) + x^10*A(x)^8/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) + ...
(2) A(x) = (1+x*A(x)^2) + x^2*A(x)^2*(1 + x^3*A(x)^2)*(1+x*A(x)^2)/(1-x) + x^7*A(x)^4*(1 + x^5*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)/((1-x)*(1-x^2)) + x^15*A(x)^6*(1 + x^7*A(x)^2)*(1+x*A(x)^2)*(1+x^2*A(x)^2)*(1+x^3*A(x)^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = Product[1 + x^k*A[x]^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[-r*s*(1 + s^2) * Derivative[0, 1][QPochhammer][-s^2, r] / (8*Pi*(s^2 + (1 + s^2)^2 * QPolyGamma[1, Log[-s^2]/Log[r], r]/ Log[r]^2))]} /. FindRoot[{QPochhammer[-s^2, r] == s*(1 + s^2), 1/2 + s^2/(1 + s^2) + (Log[1 - r] + QPolyGamma[0, Log[-s^2]/Log[r], r])/Log[r] == 0}, {r, 1/8}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=prod(m=1, n, (1+A^2*x^m+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(m+1)/2)*A^(2*m)/prod(k=1, m, 1-x^k +x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n) = my(A=1+x); for(i=1, n, A=sum(m=0, n, x^(m*(3*m+1)/2)*A^(2*m)*(1 + x^(2*m+1)*A^2)*prod(k=1, m, (1+A^2*x^k)/(1-x^k+x*O(x^n))))); polcoeff(A, n)}

Formula

G.f. satisfies:
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2)*A(x)^(2*n) / Product_{k=1..n} (1-x^k).
(2) A(x) = Sum_{n>=0} x^(n*(3n+1)/2)*A(x)^(2*n)*(1 + x^(2n+1)*A(x)^2)*Product_{k=1..n} (1 + x^k*A(x)^2)/(1-x^k) due to Sylvester's identity.
a(n) ~ c * d^n / n^(3/2), where d = 5.5051727555189932106045782067309509... and c = 0.4987046473347092789085107139372... - Vaclav Kotesovec, Sep 28 2023
Radius of convergence r = 0.181647342310464199522927295317... = 1/d and A(r) = 1.82512871645978495662055342941... satisfy A(r) = 1 / sqrt( Sum_{n>=1} 2*r^n/(1 + r^n*A(r)^2) ) and A(r) = Product_{n>=1} (1 + r^n*A(r)^2). - Paul D. Hanna, Mar 03 2024

A210043 G.f. A(x) satisfies: A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(n-1)).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 73, 211, 629, 1912, 5913, 18531, 58739, 187963, 606416, 1970326, 6441623, 21175056, 69946082, 232054411, 772886274, 2583325555, 8662455004, 29132638803, 98240253058, 332105822674, 1125273780474, 3820859749502, 12999287203624
Offset: 0

Views

Author

Paul D. Hanna, Mar 16 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 73*x^6 + 211*x^7 +...
The g.f. satisfies the q-series identities:
(0) A(x) = 1/( (1-x) * (1-x^2*A(x)) * (1-x^3*A(x)^2) * (1-x^4*A(x)^3) *...).
(1) A(x) = 1 + x/(1-x*A(x)) + x^2/((1-x*A(x))*(1-x^2*A(x)^2)) + x^3/((1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(2) A(x) = 1 + x/(1-x) + x^2*A(x)/((1-x)*(1-x^2*A(x))) + x^3*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)) +...
(3) A(x) = 1 + x/((1-x)*(1-x*A(x))) + x^4*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x*A(x))*(1-x^2*A(x)^2)) + x^9*A(x)^6/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
(4) A(x) = exp( x/(1-x*A(x)) + x^2/(2*(1-x^2*A(x)^2)) + x^3/(3*(1-x^3*A(x)^3)) +...).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x)/Product[1 - x^k*A[x]^(k - 1), {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Sep 28 2023 *)
    (* Calculation of constants {d,c}: *) {1/r, -s*Log[r*s]* Sqrt[(-1 + r*s)*(((-2 + s)*Log[r*s] + (-1 + s)*Log[1 - r*s] + (-1 + s)*QPolyGamma[0, Log[1/s]/Log[r*s], r*s])/ (2* Pi*(Log[r*s]*(4*r*(-1 + s)*s*ArcTanh[1 - 2*r*s] + 2*(-3 + s)*(-1 + r*s)*Log[r*s]^2 + (2 - 2*s + (-5 + 3*s)*(-1 + r*s)*Log[r*s])* Log[1 - r*s] + (-1 + s)*(-1 + r*s)*Log[1 - r*s]^2) + (-1 + r*s)* Log[r*s]*((-5 + 3*s)*Log[r*s] + 2*(-1 + s)*(1 + Log[1 - r*s]))* QPolyGamma[0, Log[1/s]/Log[r*s], r*s] + (-1 + s)*(-1 + r*s)*Log[r*s]* QPolyGamma[0, Log[1/s]/Log[r*s], r*s]^2 + (-1 + r*s)*((-1 + s)*(2*Log[1/s] + Log[r*s])* QPolyGamma[1, Log[1/s]/Log[r*s], r*s] + r*s*Log[r*s]^2*((-r)*s^3*Log[r*s]* Derivative[0, 2][QPochhammer][1/s, r*s] - 2*(-1 + s)* Derivative[0, 0, 1][QPolyGamma][0, Log[1/s]/Log[r*s], r*s])))))]} /. FindRoot[{s - 1 == s^2*QPochhammer[1/s, r*s], (s - 2)/s + ((s - 1)*(Log[1 - r*s] + QPolyGamma[0, Log[1/s]/Log[r*s], r*s]))/(s*Log[r*s]) + r*s^2*Derivative[0, 1][QPochhammer][1/s, r*s] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 28 2023 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^(k-1)+x*O(x^n)))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m-1)/prod(k=1, m, (1-x^k*A^(k-1)+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/prod(k=1, m, (1-x^k*A^k +x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(m^2-m)/prod(k=1, m, (1-x^k*A^(k-1))*(1-x^k*A^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m/(1-x^m*A^m +x*O(x^n))))); polcoeff(A, n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n / Product_{k=1..n} (1 - x^k*A(x)^k).
(2) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(n-1) / Product_{k=1..n} (1 - x^k*A(x)^(k-1)).
(3) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^(n^2-n) / [Product_{k=1..n} (1 - x^k*A(x)^(k-1))*(1 - x^k*A(x)^k)].
(4) A(x) = exp( Sum_{n>=1} x^n/n / (1 - x^n*A(x)^n) ).
a(n) ~ c * d^n / n^(3/2), where d = 3.58867546756663411130633387... and c = 0.57644814981246742030509... - Vaclav Kotesovec, Aug 12 2021

A206638 G.f. satisfies: A(x) = Sum_{n>=0} 3^n*A(x)^n * x^(n^2) / Product_{k=1..n} (1 - 3*x^k)*(1 - x^k*A(x)).

Original entry on oeis.org

1, 3, 21, 147, 1074, 8076, 62454, 494292, 3990378, 32756142, 272715870, 2297982828, 19563641319, 168036314862, 1454458825605, 12674387617266, 111104771086812, 979101922849230, 8668964794053837, 77080072176742422, 687976906966730076, 6161811541538326680
Offset: 0

Views

Author

Paul D. Hanna, Feb 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 21*x^2 + 147*x^3 + 1074*x^4 + 8076*x^5 +...
where the g.f. satisfies:
(0) A(x) = 1 + 3*x*A(x)/((1-3*x)*(1-x*A(x))) + 9*x^4*A(x)^2/((1-3*x)*(1-3*x^2)*(1-x*A(x))*(1-x^2*A(x))) + 27*x^9*A(x)^3/((1-3*x)*(1-3*x^2)*(1-3*x^3)*(1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
(1) A(x) = 1 + 3*x*A(x)/(1-3*x) + 3*x^2*A(x)^2/((1-3*x)*(1-3*x^2)) + 3*x^3*A(x)^3/((1-3*x)*(1-3*x^2)*(1-3*x^3)) +...
(2) A(x) = 1 + 3*x*A(x)/(1-x*A(x)) + 9*x^2*A(x)/((1-x*A(x))*(1-x^2*A(x))) + 27*x^3*A(x)/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*3^m*A^m/prod(k=1, m, (1-3*x^k)*(1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 3*x^m*A^m/prod(k=1, m, (1-3*x^k+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, 3^m*x^m*A/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    for(n=0,35,print1(a(n),", "))

Formula

G.f. satisfies the identities:
(1) A(x) = 1 + Sum_{n>=1} 3*x^n*A(x)^n / Product_{k=1..n} (1 - 3*x^k).
(2) A(x) = 1 + Sum_{n>=1} 3^n*x^n*A(x) / Product_{k=1..n} (1 - x^k*A(x)).

A206639 G.f. A(x) satisfies A(x) = Sum_{n>=0} x^(n^2) * A(x)^(2*n) / Product_{k=1..n} (1 - x^k*A(x))^2.

Original entry on oeis.org

1, 1, 4, 18, 91, 489, 2751, 15985, 95218, 578324, 3568084, 22299964, 140885754, 898292262, 5772951668, 37355908797, 243184468271, 1591567315702, 10465836784159, 69114490893596, 458171948148640, 3047865264442504, 20339282134624054, 136122586785459512
Offset: 0

Views

Author

Paul D. Hanna, Feb 11 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 91*x^4 + 489*x^5 + 2751*x^6 +...
where the g.f. satisfies:
(0) A(x) = 1 + x*A(x)^2/(1-x*A(x))^2 + x^4*A(x)^4/((1-x*A(x))^2*(1-x^2*A(x))^2) + x^9*A(x)^6/((1-x*A(x))^2*(1-x^2*A(x))^2*(1-x^3*A(x))^2) +...
(1) A(x) = 1 + x*A(x)^2/(1-x*A(x)) + x^2*A(x)^3/((1-x*A(x))*(1-x^2*A(x))) + x^3*A(x)^4/((1-x*A(x))*(1-x^2*A(x))*(1-x^3*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(2*m)/prod(k=1, m, 1-x^k*A+x*O(x^n))^2)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m+1)/prod(k=1, m, (1-x^k*A+x*O(x^n))))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. satisfies the identities:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(n+1) / Product_{k=1..n} (1 - x^k*A(x)).
(2) A(x) = 1/(1 - Sum_{n>=1} x^n*A(x)^n / Product_{k=1..n} (1 - x^k*A(x)) ).
Showing 1-6 of 6 results.