cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210185 Sum of distinct residues of all factorials mod prime(n).

Original entry on oeis.org

1, 3, 7, 12, 24, 56, 97, 103, 156, 224, 341, 494, 608, 521, 732, 821, 997, 1412, 1312, 1228, 1592, 1984, 2212, 2503, 2583, 3158, 3644, 3846, 3309, 4004, 5149, 5394, 6214, 6129, 7667, 6371, 8100, 8320, 8464, 9174, 10195, 10083, 11973, 11660, 12174, 11530, 14053
Offset: 1

Views

Author

Vladimir Shevelev, Mar 18 2012

Keywords

Examples

			Let n=4, p_4=7. We have modulo 7: 1!==1, 2!==2, 3!==6, 4!==3, 5!==1, 6!==6 and for m>=7, m!==0, such that we have 5 distinct residues 0,1,2,3,6. Therefore a(4)=0+1+2+3+6=12.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Union[Mod[Range[Prime[n]]!, Prime[n]]]], {n, 100}] (* T. D. Noe, Mar 18 2012 *)
  • PARI
    a(n) = my(p=prime(n)); vecsum(Set(vector(p, k, k! % p))); \\ Michel Marcus, Dec 15 2018