cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A067966 Number of binary arrangements without adjacent 1's on n X n array connected n-s.

Original entry on oeis.org

1, 2, 9, 125, 4096, 371293, 85766121, 52523350144, 83733937890625, 350356403707485209, 3833759992447475122176, 109879109551310452512114617, 8243206936713178643875538610721, 1619152874321527556575810000000000000
Offset: 0

Views

Author

R. H. Hardin, Feb 02 2002

Keywords

Comments

Central coefficients of triangle A210341.

Examples

			Neighbors for n=4:
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
| | | |
| | | |
o o o o
		

Crossrefs

Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.

Programs

  • Magma
    [Fibonacci(n+2)^n: n in [0..13]]; // Bruno Berselli, Mar 28 2012
  • Mathematica
    Table[Fibonacci[n+2]^n, {n, 0, 100}]
  • Maxima
    makelist(fib(n+2)^n, n, 0, 14);
    
  • PARI
    a(n)=fibonacci(n+2)^n \\ Charles R Greathouse IV, Mar 28 2012
    

Formula

a(n) = F(n+2)^n, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) ~ phi^2/sqrt(5) phi^n^2. [Charles R Greathouse IV, Mar 28 2012]

Extensions

Edited by Dean Hickerson, Feb 15 2002

A210341 Triangle generated by T(n,k) = Fibonacci(n-k+2)^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 5, 9, 8, 1, 1, 8, 25, 27, 16, 1, 1, 13, 64, 125, 81, 32, 1, 1, 21, 169, 512, 625, 243, 64, 1, 1, 34, 441, 2197, 4096, 3125, 729, 128, 1, 1, 55, 1156, 9261, 28561, 32768, 15625, 2187, 256, 1, 1, 89, 3025, 39304, 194481, 371293
Offset: 0

Views

Author

Emanuele Munarini, Mar 20 2012

Keywords

Comments

Number of tilings of an nXk chessboard using monomers and dimers of a fixed orientation. This is easy to see because the board here consists of k independent strips of length n. - Ralf Stephan, May 22 2014
Row sums = A210342
Central coefficients = A067966.
This triangle is related to the infinite Vandermonde matrix
V = [F(i+2)^j]_(i,j>=0) generated by Fibonacci numbers:
1, 1, 1, 1, 1, 1, 1
1, 2, 4, 8, 16, 32, 64
1, 3, 9, 27, 81, 243, 729
1, 5, 25, 125, 625, 3125, 15625
1, 8, 64, 512, 4096, 32768, 262144
1, 13, 169, 2197, 28561, 371293, 4826809
1, 21, 441, 9261, 194481, 4084101, 85766121
The generating series of the columns can be expressed in terms of Fibonomial coefficients (A010048) (see Riordan's paper).

Examples

			Triangle begins:
  1
  1,  1
  1,  2,   1
  1,  3,   4,    1
  1,  5,   9,    8,    1
  1,  8,  25,   27,   16,    1
  1, 13,  64,  125,   81,   32,   1
  1, 21, 169,  512,  625,  243,  64,   1
  1, 34, 441, 2197, 4096, 3125, 729, 128, 1
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n-k+2)^k: k in [0..n], n in [0..10]]; /* Alternatively: */ [[Fibonacci(n-k+2)^k: k in [0..n]]: n in [0..8]]; // Bruno Berselli, Mar 28 2012
  • Mathematica
    Flatten[Table[Fibonacci[n-k+2]^k,{n,0,20},{k,0,n}]]
  • Maxima
    create_list(fib(n-k+2)^k,n,0,20,k,0,n);
    

Formula

G.f.: Sum_{k>=0} x^k/(1-Fibonacci(k+2)*x*y).

A182148 a(n) = Fibonacci(n-1)^n.

Original entry on oeis.org

1, 0, 1, 1, 16, 243, 15625, 2097152, 815730721, 794280046581, 2064377754059776, 13931233916552734375, 246990403565262140303521, 11447545997288281555215581184, 1389897885974444705448234373058929, 441692732032956477538220683055593208393
Offset: 0

Views

Author

Vincenzo Librandi, Jul 04 2012

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(n-1)^n: n in [0..15]];
  • Mathematica
    Table[Fibonacci[n-1]^n,{n,0,20}]
Showing 1-3 of 3 results.