A164926
Least prime p such that x^2+x+p produces primes for x=0..n-1 and composite for x=n.
Original entry on oeis.org
2, 3, 107, 5, 347, 1607, 1277, 21557, 51867197, 11, 180078317, 1761702947, 8776320587, 27649987598537, 291598227841757, 17
Offset: 1
- R. A. Goudsmit, Unusual Prime Number Sequences, Nature, Vol. 214 (June 10, 1967), page 1164.
- R. A. Mollin, Prime-Producing Quadratics, The American Mathematical Monthly, Vol. 104, No. 6 (Jun. - Jul., 1997), pp. 529-544.
Cf.
A005846,
A014556,
A067774,
A210360,
A210361,
A210362,
A210363,
A210364,
A210365,
A211236,
A211237,
A211238,
A211239,
A211240,
A354585.
-
PrimeRun[p_Integer] := Module[{k=0}, While[PrimeQ[k^2+k+p], k++ ]; k]; nn=8; t=Table[0,{nn}]; cnt=0; p=1; While[cnt
A210361
Prime numbers p such that x^2 + x + p produces primes for x = 0..2 but not x = 3.
Original entry on oeis.org
107, 191, 311, 461, 821, 857, 881, 1301, 1871, 1997, 2081, 2237, 2267, 2657, 3251, 3461, 3671, 4517, 4967, 5231, 5477, 5501, 5651, 6197, 6827, 7877, 8087, 8291, 8537, 8861, 9431, 10427, 10457, 11171, 12917, 13001, 13691, 13757, 13877, 14081, 14321, 15641
Offset: 1
-
lookfor = 3; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
A210362
Prime numbers p such that x^2 + x + p produces primes for x = 0..3 but not x = 4.
Original entry on oeis.org
5, 101, 227, 1091, 1481, 1487, 3917, 4127, 4787, 8231, 9461, 10331, 11777, 12107, 14627, 16061, 20747, 25577, 27737, 29021, 32297, 33347, 35531, 35591, 36467, 38447, 39227, 41177, 42461, 44267, 44531, 49031, 59441, 69191, 77237, 79811, 80777, 93251, 93491
Offset: 1
-
lookfor = 4; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
Select[Prime[Range[10000]],AllTrue[#+{2,6,12},PrimeQ]&&!PrimeQ[#+20]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 26 2015 *)
Select[Prime[Range[10000]],Boole[PrimeQ[#+{2,6,12,20}]]=={1,1,1,0}&] (* Harvey P. Dale, Nov 17 2024 *)
A210363
Prime numbers p such that x^2 + x + p produces primes for x = 0..4 but not x = 5.
Original entry on oeis.org
347, 641, 1427, 2687, 4001, 4637, 4931, 19421, 21011, 22271, 23741, 26711, 27941, 32057, 43781, 45821, 55331, 55817, 68207, 71327, 91571, 128657, 165701, 167621, 172421, 179897, 191447, 193871, 205421, 234191, 239231, 258107, 258611, 259157, 278807, 290021
Offset: 1
-
lookfor = 5; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
Select[Prime[Range[26000]],AllTrue[#+{2,6,12,20},PrimeQ] && !PrimeQ[ #+30]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 13 2017 *)
Select[Prime[Range[26000]],Boole[PrimeQ[#+{2,6,12,20,30}]]=={1,1,1,1,0}&] (* Harvey P. Dale, May 29 2025 *)
A210364
Prime numbers p such that x^2 + x + p produces primes for x = 0..5 but not x = 6.
Original entry on oeis.org
1607, 3527, 13901, 31247, 33617, 55661, 68897, 97367, 166841, 195731, 221717, 347981, 348431, 354371, 416387, 506327, 548831, 566537, 929057, 954257, 1246367, 1265081, 1358801, 1505087, 1538081, 1595051, 1634441, 1749257, 2200811, 2322107, 2641547, 2697971
Offset: 1
-
lookfor = 6; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
A210365
Prime numbers p such that x^2 + x + p produces primes for x = 0..6 but not x = 7.
Original entry on oeis.org
1277, 28277, 113147, 421697, 665111, 1164587, 1615631, 2798921, 2846771, 3053747, 5071667, 5093507, 5344247, 5706641, 6383051, 8396777, 10732817, 10812407, 11920367, 13176587, 16197947, 16462541, 16655447, 16943471, 17807831, 18102101, 20488901, 23421311
Offset: 1
-
lookfor = 7; t = {}; n = 0; While[Length[t] < 30, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
A297709
Table read by antidiagonals: Let b be the number of digits in the binary expansion of n. Then T(n,k) is the k-th odd prime p such that the binary digits of n match the primality of the b consecutive odd numbers beginning with p (or 0 if no such k-th prime exists).
Original entry on oeis.org
3, 5, 7, 7, 13, 3, 11, 19, 5, 23, 13, 23, 11, 31, 7, 17, 31, 17, 47, 13, 5, 19, 37, 29, 53, 19, 11, 3, 23, 43, 41, 61, 37, 17, 0, 89, 29, 47, 59, 73, 43, 29, 0, 113, 23, 31, 53, 71, 83, 67, 41, 0, 139, 31, 19, 37, 61, 101, 89, 79, 59, 0, 181, 47, 43, 7, 41, 67
Offset: 1
13 = 1101_2, so row n=13 lists the odd primes p such that the four consecutive odd numbers p, p+2, p+4, and p+6 are prime, prime, composite, and prime, respectively; these are the terms of A022004.
14 = 1110_2, so row n=14 lists the odd primes p such that p, p+2, p+4, and p+6 are prime, prime, prime, and composite, respectively; since there is only one such prime (namely, 3), there is no such 2nd, 3rd, 4th, etc. prime, so the terms in row 14 are {3, 0, 0, 0, ...}.
15 = 1111_2, so row n=15 would list the odd primes p such that p, p+2, p+4, and p+6 are all prime, but since no such prime exists, every term in row 15 is 0.
Table begins:
n in base| k | OEIS
---------+----------------------------------------+sequence
10 2 | 1 2 3 4 5 6 7 8 | number
=========+========================================+========
1 1 | 3 5 7 11 13 17 19 23 | A065091
2 10 | 7 13 19 23 31 37 43 47 | A049591
3 11 | 3 5 11 17 29 41 59 71 | A001359
4 100 | 23 31 47 53 61 73 83 89 | A124582
5 101 | 7 13 19 37 43 67 79 97 | A029710
6 110 | 5 11 17 29 41 59 71 101 | A001359*
7 111 | 3 0 0 0 0 0 0 0 |
8 1000 | 89 113 139 181 199 211 241 283 | A083371
9 1001 | 23 31 47 53 61 73 83 131 | A031924
10 1010 | 19 43 79 109 127 163 229 313 |
11 1011 | 7 13 37 67 97 103 193 223 | A022005
12 1100 | 29 59 71 137 149 179 197 239 | A210360*
13 1101 | 5 11 17 41 101 107 191 227 | A022004
14 1110 | 3 0 0 0 0 0 0 0 |
15 1111 | 0 0 0 0 0 0 0 0 |
16 10000 | 113 139 181 199 211 241 283 293 | A124584
17 10001 | 89 359 389 401 449 479 491 683 | A031926
18 10010 | 31 47 61 73 83 151 157 167 |
19 10011 | 23 53 131 173 233 263 563 593 | A049438
20 10100 | 19 43 79 109 127 163 229 313 |
21 10101 | 0 0 0 0 0 0 0 0 |
22 10110 | 7 13 37 67 97 103 193 223 | A022005
23 10111 | 0 0 0 0 0 0 0 0 |
24 11000 | 137 179 197 239 281 419 521 617 |
25 11001 | 29 59 71 149 269 431 569 599 | A049437*
26 11010 | 17 41 107 227 311 347 461 641 |
27 11011 | 5 11 101 191 821 1481 1871 2081 | A007530
28 11100 | 0 0 0 0 0 0 0 0 |
29 11101 | 3 0 0 0 0 0 0 0 |
30 11110 | 0 0 0 0 0 0 0 0 |
31 11111 | 0 0 0 0 0 0 0 0 |
*other than the referenced sequence's initial term 3
.
Alternative version of table:
.
n in base|primal-| k | OEIS
---------+ ity +------------------------------+ seq.
10 2 |pattern| 1 2 3 4 5 6 | number
=========+=======+==============================+========
1 1 | p | 3 5 7 11 13 17 | A065091
2 10 | pc | 7 13 19 23 31 37 | A049591
3 11 | pp | 3 5 11 17 29 41 | A001359
4 100 | pcc | 23 31 47 53 61 73 | A124582
5 101 | pcp | 7 13 19 37 43 67 | A029710
6 110 | ppc | 5 11 17 29 41 59 | A001359*
7 111 | ppp | 3 0 0 0 0 0 |
8 1000 | pccc | 89 113 139 181 199 211 | A083371
9 1001 | pccp | 23 31 47 53 61 73 | A031924
10 1010 | pcpc | 19 43 79 109 127 163 |
11 1011 | pcpp | 7 13 37 67 97 103 | A022005
12 1100 | ppcc | 29 59 71 137 149 179 | A210360*
13 1101 | ppcp | 5 11 17 41 101 107 | A022004
14 1110 | pppc | 3 0 0 0 0 0 |
15 1111 | pppp | 0 0 0 0 0 0 |
16 10000 | pcccc | 113 139 181 199 211 241 | A124584
17 10001 | pcccp | 89 359 389 401 449 479 | A031926
18 10010 | pccpc | 31 47 61 73 83 151 |
19 10011 | pccpp | 23 53 131 173 233 263 | A049438
20 10100 | pcpcc | 19 43 79 109 127 163 |
21 10101 | pcpcp | 0 0 0 0 0 0 |
22 10110 | pcppc | 7 13 37 67 97 103 | A022005
23 10111 | pcppp | 0 0 0 0 0 0 |
24 11000 | ppccc | 137 179 197 239 281 419 |
25 11001 | ppccp | 29 59 71 149 269 431 | A049437*
26 11010 | ppcpc | 17 41 107 227 311 347 |
27 11011 | ppcpp | 5 11 101 191 821 1481 | A007530
28 11100 | pppcc | 0 0 0 0 0 0 |
29 11101 | pppcp | 3 0 0 0 0 0 |
30 11110 | ppppc | 0 0 0 0 0 0 |
31 11111 | ppppp | 0 0 0 0 0 0 |
.
*other than the referenced sequence's initial term 3
Cf.
A001359,
A007530,
A022004,
A022005,
A029710,
A031924,
A031926,
A049437,
A049438,
A049591,
A065091,
A124582,
A083371,
A124584,
A210360.
Showing 1-7 of 7 results.
Comments