cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210569 a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)/30.

Original entry on oeis.org

0, 0, 0, 0, 4, 24, 84, 224, 504, 1008, 1848, 3168, 5148, 8008, 12012, 17472, 24752, 34272, 46512, 62016, 81396, 105336, 134596, 170016, 212520, 263120, 322920, 393120, 475020, 570024, 679644, 805504, 949344, 1113024, 1298528, 1507968, 1743588, 2007768, 2303028
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2012

Keywords

Comments

The following sequences are provided by the formula n*binomial(n,k) - binomial(n,k+1) = k*binomial(n+1,k+1):
. A000217(n) for k=1,
. A007290(n+1) for k=2,
. A050534(n) for k=3,
. a(n) for k=4,
. A000910(n+1) for k=5.
Sum of reciprocals of a(n), for n>3: 5/16.
From a(2), convolution of oblong numbers (A002378) with themselves. - Bruno Berselli, Oct 24 2016

Crossrefs

First differences are in A033488.

Programs

  • Magma
    [4*Binomial(n+1,5): n in [0..38]];
    
  • Maple
    f:=n->(n^5-5*n^3+4*n)/30;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {0,0,0,0,4,24}, 39]
    CoefficientList[Series[4x^4/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Times@@@Partition[Range[-3,40],5,1]/30 (* Harvey P. Dale, Sep 19 2020 *)
  • Maxima
    makelist(coeff(taylor(4*x^4/(1-x)^6, x, 0, n), x, n), n, 0, 38);
    
  • PARI
    a(n)=(n-3)*(n-2)*(n-1)*n*(n+1)/30 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [4*binomial(n+1,5) for n in (0..40)] # G. C. Greubel, May 23 2022

Formula

G.f.: 4*x^4/(1-x)^6.
a(n) = n*binomial(n,4)-binomial(n,5) = 4*binomial(n+1,5) = 4*A000389(n+1).
a(n) = 2*A177747(2*n-7), with A177747(-7) = A177747(-5) = A177747(-3) = A177747(-1) = 0.
(n-4)*a(n) = (n+1)*a(n-1).
E.g.f.: (1/30)*x^4*(5+x)*exp(x). - G. C. Greubel, May 23 2022
Sum_{n>=4} (-1)^n/a(n) = 20*log(2) - 655/48. - Amiram Eldar, Jun 02 2022