cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A079364 Composite numbers having two composite neighbors.

Original entry on oeis.org

9, 15, 21, 25, 26, 27, 33, 34, 35, 39, 45, 49, 50, 51, 55, 56, 57, 63, 64, 65, 69, 75, 76, 77, 81, 85, 86, 87, 91, 92, 93, 94, 95, 99, 105, 111, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 129, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 153, 154, 155
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 15 2003

Keywords

Comments

In other words, composite numbers that are not nearest-neighbors of primes. - Omar E. Pol, Jan 02 2009
Complement of A210940. - Omar E. Pol, Apr 18 2012

Crossrefs

Cf. A010051, A221309 (subsequence).

Programs

  • Haskell
    a079364 n = a079364_list !! (n-1)
    a079364_list = filter
       (\x -> a010051' (x - 1) == 0 && a010051' (x + 1) == 0) a002808_list
    -- Reinhard Zumkeller, Jan 10 2013
  • Mathematica
    Select[Range[6! ],!PrimeQ[ # ]&&!PrimeQ[ #-1]&&!PrimeQ[ #+1]&] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2010 *)
    With[{r=Complement[Range[160],Prime[Range[PrimePi[160]]]]}, Transpose[ Select[ Partition[r,3,1], Differences[#]=={1,1}&]][[2]]] (* Harvey P. Dale, Feb 05 2012 *)
    Mean/@SequencePosition[Table[If[CompositeQ[n],1,0],{n,200}],{1,1,1}] (* Harvey P. Dale, May 10 2025 *)

A210939 Nonprime nearest-neighbors of the primes.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, 32, 36, 38, 40, 42, 44, 46, 48, 52, 54, 58, 60, 62, 66, 68, 70, 72, 74, 78, 80, 82, 84, 88, 90, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 126, 128, 130, 132, 136, 138, 140, 148, 150, 152, 156
Offset: 1

Views

Author

Omar E. Pol, Apr 17 2012

Keywords

Comments

Essentially the same as A147819. R. J. Mathar, Jun 25 2012

Crossrefs

Nonprimes in A045718.

Programs

  • Mathematica
    Select[Range[156], ! PrimeQ[#] && (PrimeQ[# - 1] || PrimeQ[# + 1]) &] (* T. D. Noe, Apr 18 2012 *)
    Join[{1},Flatten[#+{-1,1}&/@Prime[Range[3,40]]]//Union] (* Harvey P. Dale, Oct 22 2022 *)
Showing 1-2 of 2 results.