A211375 Semiprimes that have both prime digits (2,3,5,7) and nonprime digits (1,4,6,8,9), without digits "0".
15, 21, 26, 34, 38, 39, 51, 58, 62, 65, 74, 82, 85, 87, 93, 95, 115, 121, 122, 123, 129, 133, 134, 142, 143, 145, 155, 158, 159, 177, 178, 183, 185, 187, 213, 214, 215, 217, 218, 219, 221, 226, 247, 249, 254, 259, 262, 265, 267, 274, 278
Offset: 1
Examples
a(1) = 15 because 15 = 3*5 is semiprime, "1" is a nonprime digit, and "5" is a prime digit.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
SemiprimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; fQ[n_] := Module[{d = IntegerDigits[n]}, SemiprimeQ[n] && Intersection[d, {2, 3, 5, 7}] != {} && Intersection[d, {1, 4, 6, 8, 9}] != {} && ! MemberQ[d, 0]]; Select[Range[278], fQ] (* T. D. Noe, Feb 09 2013 *) spQ[n_]:=PrimeOmega[n]==2&&FreeQ[IntegerDigits[n],0]&&Count[ IntegerDigits[ n],?PrimeQ]>0&&Count[IntegerDigits[n],?(!PrimeQ[#]&)]>0; Select[ Range[ 300],spQ] (* Harvey P. Dale, Mar 31 2022 *)
Comments