A211441 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w + x + y = 2.
0, 3, 15, 33, 57, 87, 123, 165, 213, 267, 327, 393, 465, 543, 627, 717, 813, 915, 1023, 1137, 1257, 1383, 1515, 1653, 1797, 1947, 2103, 2265, 2433, 2607, 2787, 2973, 3165, 3363, 3567, 3777, 3993, 4215, 4443, 4677, 4917, 5163, 5415, 5673, 5937
Offset: 0
Examples
From _Klaus Purath_, Jan 08 2019: (Start) Illustration of initial terms for n >= 3: . . o o o o o o o o . o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o o o o . o o o o o o o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o . o o o o . . a(3) = 33 a(4) = 57 a(5) = 87 (End)
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A211422.
Programs
-
GAP
b:=[3,15,33];; for n in [4..50] do b[n]:=3*b[n-1]-3*b[n-2]+b[n-3]; od; a:=Concatenation([0],b);; Print(a); # Muniru A Asiru, Jan 23 2019
-
Magma
[n le 0 select 0 else 3*(n^2+n-1): n in [0..50]]; // G. C. Greubel, Feb 10 2019
-
Mathematica
t[n_]:= t[n]= Flatten[Table[w+x+y-2, {w, -n, n}, {x, -n, n}, {y, -n, n}]] c[n_]:= Count[t[n], 0] t = Table[c[n], {n, 0, 60}] (* A211441 *) t/3 (* A028387 *) Join[{0},LinearRecurrence[{3,-3,1},{3,15,33},50]] (* Harvey P. Dale, May 10 2012 *)
-
PARI
vector(50, n, n--; if(n==0, 0, 3*(n^2+n-1))) \\ G. C. Greubel, Feb 10 2019
-
Sage
[0] + [3*(n^2+n-1) for n in (1..50)] # G. C. Greubel, Feb 10 2019
Formula
From Colin Barker, Apr 18 2012: (Start)
a(n) = 3*(n^2 + n - 1) for n > 0.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: 3*x*(1 + 2*x - x^2)/(1 - x)^3. (End)
From Klaus Purath, Jan 08 2019: (Start)
a(n) = 3*A028387(n-1).
a(n) = 3*A028552(n-1) + 3.
a(n) = 3*A002378(n) - 3.
a(n) = 3*A003215(n) - 4.
a(n) + a(n+1) + a(n+2) + a(n+3) = 3*(2*n+4)^2 = 12*(n+2)^2 for n > 0.
a(n) + a(n+1) + a(n+2) = 3*A003215(n+1) - 6 for n > 0. (End)
E.g.f.: 3 + 3*exp(x)*(-1 + 2*x + x^2). - Stefano Spezia, Aug 08 2019
Comments