cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A211521 Number of ordered triples (w,x,y) with all terms in {1,...,n} and w + 2x = 4y.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 9, 11, 16, 18, 25, 28, 36, 39, 49, 53, 64, 68, 81, 86, 100, 105, 121, 127, 144, 150, 169, 176, 196, 203, 225, 233, 256, 264, 289, 298, 324, 333, 361, 371, 400, 410, 441, 452, 484, 495, 529, 541, 576, 588, 625, 638, 676, 689, 729, 743
Offset: 0

Views

Author

Clark Kimberling, Apr 14 2012

Keywords

Comments

For a guide to related sequences, see A211422.
Also, number of ordered pairs (w,x) with both terms in {1,...,n} and w+2x divisible by 4. - Pontus von Brömssen, Jan 19 2020

Crossrefs

Cf. A211422.

Programs

  • Magma
    a:=[0]; for n in [1..55] do m:=0; for i, j in [1..n] do if (i+2*j) mod 4 eq 0  then m:=m+1; end if; end for; Append(~a, m); end for; a; // Marius A. Burtea, Jan 19 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 57); [0,0] cat Coefficients(R!( x^3*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)))); // Marius A. Burtea, Jan 19 2020
  • Mathematica
    t[n_] := t[n] = Flatten[Table[w + 2 x - 4 y, {w, 1, n}, {x, 1, n}, {y, 1, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}]  (* A211521 *)
    FindLinearRecurrence[t]
    LinearRecurrence[{1,1,-1,1,-1,-1,1},{0,0,1,2,4,5,9},56] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    concat(vector(2), Vec(x^2*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)) + O(x^40))) \\ Colin Barker, Dec 02 2017
    

Formula

a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
a(n) = (2*n^2-n+1+(n-1)*(-1)^n+(-1)^((2*n+1-(-1)^n)/4)-(-1)^((6*n+1-(-1)^n)/4))/8. - Luce ETIENNE, Dec 31 2015
G.f.: x^2*(1 + x + x^2 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)). - Colin Barker, Dec 02 2017

Extensions

Offset corrected by Pontus von Brömssen, Jan 19 2020