A211540 Number of ordered triples (w,x,y) with all terms in {1..n} and 2w = 3x + 4y.
0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120, 127, 133, 140, 147, 154, 161, 169, 176, 184, 192, 200, 208, 217, 225, 234, 243, 252, 261, 271, 280, 290
Offset: 0
Examples
a(5) = a(6) = 1 with only one ordered triple (5,2,1). - _Michael Somos_, Feb 02 2015 a(11) = 5 Number of different distributions of 11 identical balls in 3 boxes as x,y and z where 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Dec 31 2015 a(1) = a(2) = a(3) = a(4) = a(5) = 0, since with fewer than 6 identical balls there is no such distribution with 3 boxes that holds for 0 < x < y < z. - _Ece Uslu_, Esin Becenen, Dec 31 2015 G.f.: x^5 + x^6 + 2*x^7 + 3*x^8 + 4*x^9 + 5*x^10 + 7*x^11 + 8*x^12 + ... From _Gus Wiseman_, Oct 11 2020: (Start) The a(5) = 1 through a(15) = 14 partitions of n + 1 into three parts > 1 [Woodward] are the following (A = 10, B = 11, C = 12). The ordered version is A000217(n - 4) and the Heinz numbers are A046316. 222 322 332 333 433 443 444 544 554 555 655 422 432 442 533 543 553 644 654 664 522 532 542 552 643 653 663 754 622 632 633 652 662 744 763 722 642 733 743 753 772 732 742 752 762 844 822 832 833 843 853 922 842 852 862 932 933 943 A22 942 952 A32 A33 B22 A42 B32 C22 The a(5) = 1 through a(15) = 14 partitions of n + 4 into three distinct parts > 1 [Resta] are the following (A = 10, B = 11, C = 12, D = 13, E = 14). The ordered version is A211540*6 and the Heinz numbers are A046389. 432 532 542 543 643 653 654 754 764 765 865 632 642 652 743 753 763 854 864 874 732 742 752 762 853 863 873 964 832 842 843 862 872 954 973 932 852 943 953 963 982 942 952 962 972 A54 A32 A42 A43 A53 A63 B32 A52 A62 A72 B42 B43 B53 C32 B52 B62 C42 C43 D32 C52 D42 E32 The a(5) = 1 through a(15) = 14 partitions of n + 1 into three distinct parts [Uslu and Becenen] are the following (A = 10, B = 11, C = 12, D = 13). The ordered version is A211540(n)*6 and the Heinz numbers are A007304. 321 421 431 432 532 542 543 643 653 654 754 521 531 541 632 642 652 743 753 763 621 631 641 651 742 752 762 853 721 731 732 751 761 843 862 821 741 832 842 852 871 831 841 851 861 943 921 931 932 942 952 A21 941 951 961 A31 A32 A42 B21 A41 A51 B31 B32 C21 B41 C31 D21 (End)
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
- Ece Uslu and Esin Becenen, Identical Object Distributions.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,-1,-1,1).
Crossrefs
All of the following pertain to 3-part strict partitions.
Programs
-
Magma
I:=[0,0,0,0,0,1]; [n le 6 select I[n] else Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5)+Self(n-6): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
-
Maple
f:= gfun:-rectoproc({a(n) = a(n-1)+a(n-2)-a(n-4)-a(n-5)+a(n-6),seq(a(i)=0,i=0..4),a(5)=1},a(n),remember): seq(f(i),i=0..100); # Robert Israel, Dec 31 2015
-
Mathematica
t[n_] := t[n] = Flatten[Table[-2 w + 3 x + 4 y, {w, n}, {x, n}, {y, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 80}] (* A211540 *) FindLinearRecurrence[t] LinearRecurrence[{1, 1, 0, -1, -1, 1}, {0, 0, 0, 0, 0, 1}, 70] (* Vincenzo Librandi, Dec 31 2015 *) Table[Length[Select[IntegerPartitions[n+1,{3}],UnsameQ@@#&]],{n,0,30}] (* Gus Wiseman, Oct 05 2020 *)
-
PARI
{a(n) = round( (n-2)^2 / 12 )}; / * Michael Somos, Feb 02 2015 */
-
PARI
concat(vector(5), Vec(x^5/(1-x-x^2+x^4+x^5-x^6) + O(x^100))) \\ Altug Alkan, Jan 10 2016
Formula
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6).
a(n) = 3*k^2-6*k+3 (for n = 6*k-3), 3*k^2-5*k+2 (for n = 6*k-2), 3*k^2-4*k+1 (for n = 6*k-1), 3*k^2-3*k+1 (for n = 6*k), 3*k^2-2*k (for n = 6*k+1), 3*k^2-k (for n = 6*k+2). - Ece Uslu, Esin Becenen, Dec 31 2015
G.f.: x^5/(1 - x - x^2 + x^4 + x^5 - x^6). - Robert Israel, Dec 31 2015
a(n) = Sum_{k=1..floor(n/3)} floor((n-k)/2)-k. - Wesley Ivan Hurt, Apr 27 2019
From Gus Wiseman, Oct 11 2020: (Start)
A000217(n-2) counts 3-part compositions.
A000217(n-5) counts 3-part compositions with no 1's.
(End)
Comments