cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A236104 Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 4, 9, 1, 16, 1, 25, 4, 36, 4, 1, 49, 9, 1, 64, 9, 1, 81, 16, 4, 100, 16, 4, 1, 121, 25, 4, 1, 144, 25, 9, 1, 169, 36, 9, 1, 196, 36, 9, 4, 225, 49, 16, 4, 1, 256, 49, 16, 4, 1, 289, 64, 16, 4, 1, 324, 64, 25, 9, 1, 361, 81, 25, 9, 1, 400, 81, 25, 9, 4
Offset: 1

Views

Author

Omar E. Pol, Jan 23 2014

Keywords

Comments

These are the squares of the entries of the triangle in A235791: T(n,k) = (A235791(n,k))^2.
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Columns 1-3 (including the initial zeros) are A000290, A008794, A211547.
Also column k lists the partial sums of the k-th column of triangle A196020 which gives an identity for sigma.
Since all the elements of this sequence are squares, we can draw an illustration of the alternating sum of row n step by step, and a symmetric diagram for A000203, A024916, A004125; see example.
For more information about the diagram see A237593.

Examples

			Triangle begins:
    1;
    4;
    9,   1;
   16,   1;
   25,   4;
   36,   4,   1;
   49,   9,   1;
   64,   9,   1;
   81,  16,   4;
  100,  16,   4,   1;
  121,  25,   4,   1;
  144,  25,   9,   1;
  169,  36,   9,   1;
  196,  36,   9,   4;
  225,  49,  16,   4,   1;
  256,  49,  16,   4,   1;
  289,  64,  16,   4,   1;
  324,  64,  25,   9,   1;
  361,  81,  25,   9,   1;
  400,  81,  25,   9,   4;
  441, 100,  36,   9,   4,   1;
  484, 100,  36,  16,   4,   1;
  529, 121,  36,  16,   4,   1;
  576, 121,  49,  16,   4,   1;
  ...
For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 36, 4, 1, therefore the alternating row sum is 36 - 4 + 1 = 33, equaling the sum of all divisors of all positive integers <= 6.
Illustration of the alternating sum of the 6th row as the area of a polygon (or the number of cells), step by step, in the fourth quadrant:
.     _ _ _ _ _ _       _ _ _ _ _ _       _ _ _ _ _ _
.    |           |     |           |     |           |
.    |           |     |           |     |           |
.    |           |     |           |     |           |
.    |           |     |        _ _|     |          _|
.    |           |     |       |         |        _|
.    |_ _ _ _ _ _|     |_ _ _ _|         |_ _ _ _|
.
.          36           36 - 4 = 32     36 - 4 + 1 = 33
.
Then using this method we can draw a symmetric diagram for A000203, A024916, A004125, as shown below:
--------------------------------------------------
n     A000203  A024916            Diagram
--------------------------------------------------
.                         _ _ _ _ _ _ _ _ _ _ _ _
1        1        1      |_| | | | | | | | | | | |
2        3        4      |_ _|_| | | | | | | | | |
3        4        8      |_ _|  _|_| | | | | | | |
4        7       15      |_ _ _|    _|_| | | | | |
5        6       21      |_ _ _|  _|  _ _|_| | | |
6       12       33      |_ _ _ _|  _| |  _ _|_| |
7        8       41      |_ _ _ _| |_ _|_|    _ _|
8       15       56      |_ _ _ _ _|  _|     |* *
9       13       69      |_ _ _ _ _| |      _|* *
10      18       87      |_ _ _ _ _ _|  _ _|* * *
11      12       99      |_ _ _ _ _ _| |* * * * *
12      28      127      |_ _ _ _ _ _ _|* * * * *
.
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. Finally, the number of *'s is A004125(12) = 17.
Note that the diagram is also the top view of the stepped pyramid described in A245092. - _Omar E. Pol_, Feb 12 2018
		

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[(n + 1)/k - (k + 1)/2]^2, {n, 20}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* Michael De Vlieger, Feb 10 2018, after Hartmut F. W. Hoft at A235791 *)
  • Python
    from sympy import sqrt
    import math
    def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
    for n in range(1, 21): print([T(n, k)**2 for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017

Formula

Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A024916(n). [Although this was stated as a fact, as far as I can tell, no proof was known. However, Don Reble has recently found a proof, which will be added here soon. - N. J. A. Sloane, Nov 23 2020]
A000203(n) = Sum_{k=1..A003056(n)} (-1)^(k-1) * (T(n,k) - T(n-1,k)), assuming that T(k*(k+1)/2-1,k) = 0. - Omar E. Pol, Oct 10 2018

A211422 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.

Original entry on oeis.org

1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0

Views

Author

Clark Kimberling, Apr 10 2012

Keywords

Comments

Suppose that S={-n,...,0,...,n} and that f(w,x,y,n) is a function, where w,x,y are in S. The number of ordered triples (w,x,y) satisfying f(w,x,y,n)=0, regarded as a function of n, is a sequence t of nonnegative integers. Sequences such as t/4 may also be integer sequences for all except certain initial values of n. In the following guide, such sequences are indicated in the related sequences column and may be included in the corresponding Mathematica programs.
...
sequence... f(w,x,y,n) ..... related sequences
A211415 ... w^2+x*y-1 ...... t+2, t/4, (t/4-1)/4
A211422 ... w^2+x*y ........ (t-1)/8, A120486
A211423 ... w^2+2x*y ....... (t-1)/4
A211424 ... w^2+3x*y ....... (t-1)/4
A211425 ... w^2+4x*y ....... (t-1)/4
A211426 ... 2w^2+x*y ....... (t-1)/4
A211427 ... 3w^2+x*y ....... (t-1)/4
A211428 ... 2w^2+3x*y ...... (t-1)/4
A211429 ... w^3+x*y ........ (t-1)/4
A211430 ... w^2+x+y ........ (t-1)/2
A211431 ... w^3+(x+y)^2 .... (t-1)/2
A211432 ... w^2-x^2-y^2 .... (t-1)/8
A003215 ... w+x+y .......... (t-1)/2, A045943
A202253 ... w+2x+3y ........ (t-1)/2, A143978
A211433 ... w+2x+4y ........ (t-1)/2
A211434 ... w+2x+5y ........ (t-1)/4
A211435 ... w+4x+5y ........ (t-1)/2
A211436 ... 2w+3x+4y ....... (t-1)/2
A211435 ... 2w+3x+5y ....... (t-1)/2
A211438 ... w+2x+2y ....... (t-1)/2, A118277
A001844 ... w+x+2y ......... (t-1)/4, A000217
A211439 ... w+3x+3y ........ (t-1)/2
A211440 ... 2w+3x+3y ....... (t-1)/2
A028896 ... w+x+y-1 ........ t/6, A000217
A211441 ... w+x+y-2 ........ t/3, A028387
A182074 ... w^2+x*y-n ...... t/4, A028387
A000384 ... w+x+y-n
A000217 ... w+x+y-2n
A211437 ... w*x*y-n ........ t/4, A007425
A211480 ... w+2x+3y-1
A211481 ... w+2x+3y-n
A211482 ... w*x+w*y+x*y-w*x*y
A211483 ... (n+w)^2-x-y
A182112 ... (n+w)^2-x-y-w
...
For the following sequences, S={1,...,n}, rather than
{-n,...,0,...n}. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A132188 ... w^2-x*y
A211506 ... w^2-x*y-n
A211507 ... w^2-x*y+n
A211508 ... w^2+x*y-n
A211509 ... w^2+x*y-2n
A211510 ... w^2-x*y+2n
A211511 ... w^2-2x*y ....... t/2
A211512 ... w^2-3x*y ....... t/2
A211513 ... 2w^2-x*y ....... t/2
A211514 ... 3w^2-x*y ....... t/2
A211515 ... w^3-x*y
A211516 ... w^2-x-y
A211517 ... w^3-(x+y)^2
A063468 ... w^2-x^2-y^2 .... t/2
A000217 ... w+x-y
A001399 ... w-2x-3y
A211519 ... w-2x+3y
A008810 ... w+2x-3y
A001399 ... w-2x-3y
A008642 ... w-2x-4y
A211520 ... w-2x+4y
A211521 ... w+2x-4y
A000115 ... w-2x-5y
A211522 ... w-2x+5y
A211523 ... w+2x-5y
A211524 ... w-3x-5y
A211533 ... w-3x+5y
A211523 ... w+3x-5y
A211535 ... w-4x-5y
A211536 ... w-4x+5y
A008812 ... w+4x-5y
A055998 ... w+x+y-2n
A074148 ... 2w+x+y-2n
A211538 ... 2w+2x+y-2n
A211539 ... 2w+2x-y-2n
A211540 ... 2w-3x-4y
A211541 ... 2w-3x+4y
A211542 ... 2w+3x-4y
A211543 ... 2w-3x-5y
A211544 ... 2w-3x+5y
A008812 ... 2w+3x-5y
A008805 ... w-2x-2y (repeated triangular numbers)
A001318 ... w-2x+2y
A000982 ... w+x-2y
A211534 ... w-3x-3y
A211546 ... w-3x+3y (triply repeated triangular numbers)
A211547 ... 2w-3x-3y (triply repeated squares)
A082667 ... 2w-3x+3y
A055998 ... w-x-y+2
A001399 ... w-2x-3y+1
A108579 ... w-2x-3y+n
...
Next, S={-n,...-1,1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated inequality. If f(w,x,y,n) is linear in w,x,y,n, then the sequence is a linear recurrence sequence.
A211545 ... w+x+y>0; recurrence degree: 4
A211612 ... w+x+y>=0
A211613 ... w+x+y>1
A211614 ... w+x+y>2
A211615 ... |w+x+y|<=1
A211616 ... |w+x+y|<=2
A211617 ... 2w+x+y>0; recurrence degree: 5
A211618 ... 2w+x+y>1
A211619 ... 2w+x+y>2
A211620 ... |2w+x+y|<=1
A211621 ... w+2x+3y>0
A211622 ... w+2x+3y>1
A211623 ... |w+2x+3y|<=1
A211624 ... w+2x+2y>0; recurrence degree: 6
A211625 ... w+3x+3y>0; recurrence degree: 8
A211626 ... w+4x+4y>0; recurrence degree: 10
A211627 ... w+5x+5y>0; recurrence degree: 12
A211628 ... 3w+x+y>0; recurrence degree: 6
A211629 ... 4w+x+y>0; recurrence degree: 7
A211630 ... 5w+x+y>0; recurrence degree: 8
A211631 ... w^2>x^2+y^2; all terms divisible by 8
A211632 ... 2w^2>x^2+y^2; all terms divisible by 8
A211633 ... w^2>2x^2+2y^2; all terms divisible by 8
...
Next, S={1,...,n}, and the sequence counts the cases (w,x,y) satisfying the indicated relation.
A211634 ... w^2<=x^2+y^2
A211635 ... w^2A211790
A211636 ... w^2>=x^2+y^2
A211637 ... w^2>x^2+y^2
A211638 ... w^2+x^2+y^2
A211639 ... w^2+x^2+y^2<=n
A211640 ... w^2+x^2+y^2>n
A211641 ... w^2+x^2+y^2>=n
A211642 ... w^2+x^2+y^2<2n
A211643 ... w^2+x^2+y^2<=2n
A211644 ... w^2+x^2+y^2>2n
A211645 ... w^2+x^2+y^2>=2n
A211646 ... w^2+x^2+y^2<3n
A211647 ... w^2+x^2+y^2<=3n
A063691 ... w^2+x^2+y^2=n
A211649 ... w^2+x^2+y^2=2n
A211648 ... w^2+x^2+y^2=3n
A211650 ... w^3A211790
A211651 ... w^3>x^3+y^3; see Comments at A211790
A211652 ... w^4A211790
A211653 ... w^4>x^4+y^4; see Comments at A211790

Examples

			a(1) counts these 9 triples: (-1,-1,1), (-1, 1,-1), (0, -1, 0), (0, 0, -1), (0,0,0), (0,0,1), (0,1,0), (1,-1,1), (1,1,-1).
		

Crossrefs

Cf. A120486.

Programs

  • Mathematica
    t[n_] := t[n] = Flatten[Table[w^2 + x*y, {w, -n, n}, {x, -n, n}, {y, -n, n}]]
    c[n_] := Count[t[n], 0]
    t = Table[c[n], {n, 0, 70}] (* A211422 *)
    (t - 1)/8                   (* A120486 *)

A236540 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k copies of the positive squares in nondecreasing order, except the first column which lists the triangular numbers, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

0, 1, 3, 1, 6, 1, 10, 4, 15, 4, 1, 21, 9, 1, 28, 9, 1, 36, 16, 4, 45, 16, 4, 1, 55, 25, 4, 1, 66, 25, 9, 1, 78, 36, 9, 1, 91, 36, 9, 4, 105, 49, 16, 4, 1, 120, 49, 16, 4, 1, 136, 64, 16, 4, 1, 153, 64, 25, 9, 1, 171, 81, 25, 9, 1, 190, 81, 25, 9, 4, 210, 100, 36, 9, 4, 1
Offset: 1

Author

Omar E. Pol, Jan 28 2014

Keywords

Comments

Gives an identity for the sum of all aliquot divisors of all positive integers <= n.
Alternating sum of row n equals A153485(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A153485(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Column 1 is A000217. Columns 2-3 are A008794, A211547, but without the zeros.
Column k lists the partial sums of the k-th column of triangle A231347 which gives an identity for the sum of aliquot divisors of n. - Omar E. Pol, Nov 11 2014

Examples

			Triangle begins:
    0;
    1;
    3,   1;
    6,   1;
   10,   4;
   15,   4,   1;
   21,   9,   1;
   28,   9,   1;
   36,  16,   4;
   45,  16,   4,   1;
   55,  25,   4,   1;
   66,  25,   9,   1;
   78,  36,   9,   1;
   91,  36,   9,   4;
  105,  49,  16,   4,  1;
  120,  49,  16,   4,  1;
  136,  64,  16,   4,  1;
  153,  64,  25,   9,  1;
  171,  81,  25,   9,  1;
  190,  81,  25,   9,  4;
  210, 100,  36,   9,  4,  1;
  231, 100,  36,  16,  4,  1;
  253, 121,  36,  16,  4,  1;
  276, 121,  49,  16,  4,  1;
  ...
For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] hence the sum of all aliquot divisors is [0] + [1] + [1] + [1+2] + [1] + [1+2+3] = 0 + 1 + 1 + 3 + 1 + 6 = 12. On the other hand the 6th row of triangle is 15, 4, 1, therefore the alternating row sum is 15 - 4 + 1 = 12, equaling the sum of all aliquot divisors of all positive integers <= 6.
		

A236631 Triangle read by rows: T(j,k), j>=1, k>=1, in which column k lists the positive squares repeated k-1 times, except the column 1 which is A123327. The elements of the even-indexed columns are multiplied by -1. The first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 3, 5, -1, 8, -1, 10, -4, 15, -4, 1, 16, -9, 1, 23, -9, 1, 25, -16, 4, 31, -16, 4, -1, 34, -25, 4, -1, 45, -25, 9, -1, 42, -36, 9, -1, 55, -36, 9, -4, 60, -49, 16, -4, 1, 67, -49, 16, -4, 1, 69, -64, 16, -4, 1, 86, -64, 25, -9, 1, 84, -81, 25, -9, 1, 103
Offset: 1

Author

Omar E. Pol, Jan 29 2014

Keywords

Comments

T(j,k) which row j has length A003056(j) hence the first element of column k is in row A000217(j).
Row sums give A000203.
Interpreted as a sequence with index n this is also the first differences of A236630. If a(n) is positive then a(n) is the number of cells turned ON at n-th stage in the structure of A236630. If a(n) is negative then a(n) is the number of cells turned OFF at n-th stage in the structure of A236630.

Examples

			Written as an irregular triangle the sequence begins:
1;
3;
5,     -1;
8,     -1;
10,    -4;
15,    -4,    1;
16,    -9,    1;
23,    -9,    1;
25,   -16,    4;
31,   -16,    4,   -1;
34,   -25,    4,   -1;
45,   -25,    9,   -1;
42,   -36,    9,   -1;
55,   -36,    9,   -4;
60,   -49,   16,   -4,   1;
67,   -49,   16,   -4,   1;
69,   -64,   16,   -4,   1;
86,   -64,   25,   -9,   1;
84,   -81,   25,   -9,   1;
103,  -81,   25,   -9,   4;
102, -100,   36,   -9,   4,  -1;
113, -100,   36,  -16,   4,  -1;
122, -121,   36,  -16,   4,  -1;
145, -121,   49,  -16,   4,  -1;
...
For j = 15 the divisors of 15 are 1, 3, 5, 15, therefore the sum of divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand the 15th row of triangle is 60, -49, 16, -4, 1, therefore the row sum is 60 - 49 + 16 - 4 + 1 = 24, equalling the sum of divisors of 15.
		

Formula

T(n,1) = A000203(n) + A004125(n).

A360610 Triangle read by rows: T(n,k) is the number of squares of side length k that can be placed inside a square of side length n without overlap, 1 <= k <= n.

Original entry on oeis.org

1, 4, 1, 9, 1, 1, 16, 4, 1, 1, 25, 4, 1, 1, 1, 36, 9, 4, 1, 1, 1, 49, 9, 4, 1, 1, 1, 1, 64, 16, 4, 4, 1, 1, 1, 1, 81, 16, 9, 4, 1, 1, 1, 1, 1, 100, 25, 9, 4, 4, 1, 1, 1, 1, 1, 121, 25, 9, 4, 4, 1, 1, 1, 1, 1, 1, 144, 36, 16, 9, 4, 4, 1, 1, 1, 1, 1, 1, 169, 36, 16, 9, 4, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Author

Torlach Rush, Feb 13 2023

Keywords

Comments

T(n,k) is square 1 <= k <= n.
Alternative triangle construction: Write each column k as each square repreated k times.
T(*,1) is A000290.
T(*,2) is A008794.
T(*,3) is A211547.
T(*,4) is A295643(n+4).
T(*,5) is A287392(n+1).
Row sums of triangle are A222548.
This assumes the sides of the small squares are parallel to those of the large square. If the small squares are allowed to be rotated, better packings may exist (see e.g. the Friedman link).

Examples

			Sum_{T(1,*)} = A222548(1) = 1;
Sum_{T(2,*)} = A222548(2) = 5;
Sum_{T(3,*)} = A222548(3) = 11.
Triangle begins:
    1;
    4,  1;
    9,  1, 1;
   16,  4, 1, 1;
   25,  4, 1, 1, 1;
   36,  9, 4, 1, 1, 1;
   49,  9, 4, 1, 1, 1, 1;
   64, 16, 4, 4, 1, 1, 1, 1;
   81, 16, 9, 4, 1, 1, 1, 1, 1;
  100, 25, 9, 4, 4, 1, 1, 1, 1, 1;
  ...
		

Programs

  • Python
    def T(n, k): return (n//k)**2

Formula

T(n,k) = floor(n/k)^2.

A357837 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2.

Original entry on oeis.org

0, 4, 10, 20, 32, 46, 64, 84, 106, 132, 160, 190, 224, 260, 298, 340, 384, 430, 480, 532, 586, 644, 704, 766, 832, 900, 970, 1044, 1120, 1198, 1280, 1364, 1450, 1540, 1632, 1726, 1824, 1924, 2026, 2132, 2240, 2350, 2464, 2580, 2698, 2820, 2944, 3070, 3200, 3332
Offset: 0

Author

Stefano Spezia, Oct 17 2022

Keywords

Examples

			Illustrations for n = 1..8:
        _           _ _          _ _ _
       |_|         |  _|        |  _|_|
                   |_|_|        |_|  _|
                                |_|_|_|
    a(1) = 4     a(2) = 10     a(3) = 20
     _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
    |  _|_| |   |  _|_|  _|  |  _|_|  _|_|
    |_|  _|_|   |_|  _|_| |  |_|  _|_|  _|
    |_|_|  _|   |_|_|  _|_|  |_|_|  _|_| |
    |_ _|_|_|   |  _|_|  _|  |  _|_|  _|_|
                |_|_ _|_|_|  |_|  _|_|  _|
                             |_|_|_ _|_|_|
    a(4) = 32    a(5) = 46     a(6) = 64
      _ _ _ _ _ _ _      _ _ _ _ _ _ _ _
     |  _|_|  _|_| |    |  _|_|  _|_|  _|
     |_|  _|_|  _|_|    |_|  _|_|  _|_| |
     |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
     |  _|_|  _|_| |    |  _|_|  _|_|  _|
     |_|  _|_|  _|_|    |_|  _|_|  _|_| |
     |_|_|  _|_|  _|    |_|_|  _|_|  _|_|
     |_ _|_|_ _|_|_|    |  _|_|  _|_|  _|
                        |_|_ _|_|_ _|_|_|
        a(7) = 84           a(8) = 106
		

Crossrefs

Cf. A002264, A002522, A005843, A047410 (first differences), A071619, A211547.
Cf. A345118.

Programs

  • Mathematica
    Table[2(Ceiling[2(n+1)^2/3]-1),{n,0,49}]

Formula

a(n) = 2*(ceiling(2*(n+1)^2/3) - 1).
a(n) = 2*(A071619(n+1) - 1).
a(n) = 2*(1 + n^2 - 2*(n - 2)*floor((n - 1)/3) + 3*floor((n - 1)/3)^2) for n > 0.
a(n) = Sum_{k=1..n} A047410(k+1) for n > 0.
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n > 4.
O.g.f.: 2*x*(2 + x + 2*x^2 - x^3)/((1 - x)^3*(1 + x + x^2)).
E.g.f.: 2*exp(-x/2)*(exp(3*x/2)*(6*x*(3 + x) - 1) + cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9.
Showing 1-6 of 6 results.