A236104
Triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of the positive squares in nondecreasing order, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 4, 9, 1, 16, 1, 25, 4, 36, 4, 1, 49, 9, 1, 64, 9, 1, 81, 16, 4, 100, 16, 4, 1, 121, 25, 4, 1, 144, 25, 9, 1, 169, 36, 9, 1, 196, 36, 9, 4, 225, 49, 16, 4, 1, 256, 49, 16, 4, 1, 289, 64, 16, 4, 1, 324, 64, 25, 9, 1, 361, 81, 25, 9, 1, 400, 81, 25, 9, 4
Offset: 1
Triangle begins:
1;
4;
9, 1;
16, 1;
25, 4;
36, 4, 1;
49, 9, 1;
64, 9, 1;
81, 16, 4;
100, 16, 4, 1;
121, 25, 4, 1;
144, 25, 9, 1;
169, 36, 9, 1;
196, 36, 9, 4;
225, 49, 16, 4, 1;
256, 49, 16, 4, 1;
289, 64, 16, 4, 1;
324, 64, 25, 9, 1;
361, 81, 25, 9, 1;
400, 81, 25, 9, 4;
441, 100, 36, 9, 4, 1;
484, 100, 36, 16, 4, 1;
529, 121, 36, 16, 4, 1;
576, 121, 49, 16, 4, 1;
...
For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 36, 4, 1, therefore the alternating row sum is 36 - 4 + 1 = 33, equaling the sum of all divisors of all positive integers <= 6.
Illustration of the alternating sum of the 6th row as the area of a polygon (or the number of cells), step by step, in the fourth quadrant:
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | | | | | |
. | | | | | |
. | | | | | |
. | | | _ _| | _|
. | | | | | _|
. |_ _ _ _ _ _| |_ _ _ _| |_ _ _ _|
.
. 36 36 - 4 = 32 36 - 4 + 1 = 33
.
Then using this method we can draw a symmetric diagram for A000203, A024916, A004125, as shown below:
--------------------------------------------------
n A000203 A024916 Diagram
--------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _
1 1 1 |_| | | | | | | | | | | |
2 3 4 |_ _|_| | | | | | | | | |
3 4 8 |_ _| _|_| | | | | | | |
4 7 15 |_ _ _| _|_| | | | | |
5 6 21 |_ _ _| _| _ _|_| | | |
6 12 33 |_ _ _ _| _| | _ _|_| |
7 8 41 |_ _ _ _| |_ _|_| _ _|
8 15 56 |_ _ _ _ _| _| |* *
9 13 69 |_ _ _ _ _| | _|* *
10 18 87 |_ _ _ _ _ _| _ _|* * *
11 12 99 |_ _ _ _ _ _| |* * * * *
12 28 127 |_ _ _ _ _ _ _|* * * * *
.
The total number of cells in the first n set of symmetric regions of the diagram equals A024916(n). It appears that the total number of cells in the n-th set of symmetric regions of the diagram equals sigma(n) = A000203(n). Example: for n = 12 the 12th row of triangle is 144, 25, 9, 1, hence the alternating sums is 144 - 25 + 9 - 1 = 127. On the other hand we have that A000290(12) - A004125(12) = 144 - 17 = A024916(12) = 127, equaling the total number of cells in the diagram after 12 stages. The number of cells in the 12th set of symmetric regions of the diagram is sigma(12) = A000203(12) = 28. Note that in this case there is only one region. Finally, the number of *'s is A004125(12) = 17.
Note that the diagram is also the top view of the stepped pyramid described in A245092. - _Omar E. Pol_, Feb 12 2018
Cf.
A000203,
A000217,
A000290,
A001227,
A003056,
A008794,
A024916,
A004125,
A196020,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A235799,
A236106,
A236112,
A236540,
A237270,
A237591,
A237593,
A239660,
A244050,
A245092,
A262626,
A286000.
-
Table[Ceiling[(n + 1)/k - (k + 1)/2]^2, {n, 20}, {k, Floor[(Sqrt[8 n + 1] - 1)/2]}] // Flatten (* Michael De Vlieger, Feb 10 2018, after Hartmut F. W. Hoft at A235791 *)
-
from sympy import sqrt
import math
def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
for n in range(1, 21): print([T(n, k)**2 for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017
A211422
Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + x*y = 0.
Original entry on oeis.org
1, 9, 17, 25, 41, 49, 57, 65, 81, 105, 113, 121, 137, 145, 153, 161, 193, 201, 225, 233, 249, 257, 265, 273, 289, 329, 337, 361, 377, 385, 393, 401, 433, 441, 449, 457, 505, 513, 521, 529, 545, 553, 561, 569, 585, 609, 617, 625, 657, 713, 753, 761
Offset: 0
A236540
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists k copies of the positive squares in nondecreasing order, except the first column which lists the triangular numbers, and the first element of column k is in row k(k+1)/2.
Original entry on oeis.org
0, 1, 3, 1, 6, 1, 10, 4, 15, 4, 1, 21, 9, 1, 28, 9, 1, 36, 16, 4, 45, 16, 4, 1, 55, 25, 4, 1, 66, 25, 9, 1, 78, 36, 9, 1, 91, 36, 9, 4, 105, 49, 16, 4, 1, 120, 49, 16, 4, 1, 136, 64, 16, 4, 1, 153, 64, 25, 9, 1, 171, 81, 25, 9, 1, 190, 81, 25, 9, 4, 210, 100, 36, 9, 4, 1
Offset: 1
Triangle begins:
0;
1;
3, 1;
6, 1;
10, 4;
15, 4, 1;
21, 9, 1;
28, 9, 1;
36, 16, 4;
45, 16, 4, 1;
55, 25, 4, 1;
66, 25, 9, 1;
78, 36, 9, 1;
91, 36, 9, 4;
105, 49, 16, 4, 1;
120, 49, 16, 4, 1;
136, 64, 16, 4, 1;
153, 64, 25, 9, 1;
171, 81, 25, 9, 1;
190, 81, 25, 9, 4;
210, 100, 36, 9, 4, 1;
231, 100, 36, 16, 4, 1;
253, 121, 36, 16, 4, 1;
276, 121, 49, 16, 4, 1;
...
For n = 6 the divisors of all positive integers <= 6 are [1], [1, 2], [1, 3], [1, 2, 4], [1, 5], [1, 2, 3, 6] hence the sum of all aliquot divisors is [0] + [1] + [1] + [1+2] + [1] + [1+2+3] = 0 + 1 + 1 + 3 + 1 + 6 = 12. On the other hand the 6th row of triangle is 15, 4, 1, therefore the alternating row sum is 15 - 4 + 1 = 12, equaling the sum of all aliquot divisors of all positive integers <= 6.
Cf.
A000203,
A000217,
A001065,
A008794,
A003056,
A153485,
A196020,
A211547,
A211343,
A228813,
A231345,
A231347,
A235791,
A235794,
A235799,
A236104,
A236106,
A236112,
A237591,
A237593,
A286001.
A236631
Triangle read by rows: T(j,k), j>=1, k>=1, in which column k lists the positive squares repeated k-1 times, except the column 1 which is A123327. The elements of the even-indexed columns are multiplied by -1. The first element of column k is in row k(k+1)/2.
Original entry on oeis.org
1, 3, 5, -1, 8, -1, 10, -4, 15, -4, 1, 16, -9, 1, 23, -9, 1, 25, -16, 4, 31, -16, 4, -1, 34, -25, 4, -1, 45, -25, 9, -1, 42, -36, 9, -1, 55, -36, 9, -4, 60, -49, 16, -4, 1, 67, -49, 16, -4, 1, 69, -64, 16, -4, 1, 86, -64, 25, -9, 1, 84, -81, 25, -9, 1, 103
Offset: 1
Written as an irregular triangle the sequence begins:
1;
3;
5, -1;
8, -1;
10, -4;
15, -4, 1;
16, -9, 1;
23, -9, 1;
25, -16, 4;
31, -16, 4, -1;
34, -25, 4, -1;
45, -25, 9, -1;
42, -36, 9, -1;
55, -36, 9, -4;
60, -49, 16, -4, 1;
67, -49, 16, -4, 1;
69, -64, 16, -4, 1;
86, -64, 25, -9, 1;
84, -81, 25, -9, 1;
103, -81, 25, -9, 4;
102, -100, 36, -9, 4, -1;
113, -100, 36, -16, 4, -1;
122, -121, 36, -16, 4, -1;
145, -121, 49, -16, 4, -1;
...
For j = 15 the divisors of 15 are 1, 3, 5, 15, therefore the sum of divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand the 15th row of triangle is 60, -49, 16, -4, 1, therefore the row sum is 60 - 49 + 16 - 4 + 1 = 24, equalling the sum of divisors of 15.
Cf.
A000203,
A000217,
A000290,
A003056,
A004125,
A024916,
A008794,
A123327,
A196020,
A211547,
A236104,
A236630,
A237593.
A360610
Triangle read by rows: T(n,k) is the number of squares of side length k that can be placed inside a square of side length n without overlap, 1 <= k <= n.
Original entry on oeis.org
1, 4, 1, 9, 1, 1, 16, 4, 1, 1, 25, 4, 1, 1, 1, 36, 9, 4, 1, 1, 1, 49, 9, 4, 1, 1, 1, 1, 64, 16, 4, 4, 1, 1, 1, 1, 81, 16, 9, 4, 1, 1, 1, 1, 1, 100, 25, 9, 4, 4, 1, 1, 1, 1, 1, 121, 25, 9, 4, 4, 1, 1, 1, 1, 1, 1, 144, 36, 16, 9, 4, 4, 1, 1, 1, 1, 1, 1, 169, 36, 16, 9, 4, 4, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Sum_{T(1,*)} = A222548(1) = 1;
Sum_{T(2,*)} = A222548(2) = 5;
Sum_{T(3,*)} = A222548(3) = 11.
Triangle begins:
1;
4, 1;
9, 1, 1;
16, 4, 1, 1;
25, 4, 1, 1, 1;
36, 9, 4, 1, 1, 1;
49, 9, 4, 1, 1, 1, 1;
64, 16, 4, 4, 1, 1, 1, 1;
81, 16, 9, 4, 1, 1, 1, 1, 1;
100, 25, 9, 4, 4, 1, 1, 1, 1, 1;
...
A357837
a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a fishbone pattern using symmetric L-shaped tiles with side length 2.
Original entry on oeis.org
0, 4, 10, 20, 32, 46, 64, 84, 106, 132, 160, 190, 224, 260, 298, 340, 384, 430, 480, 532, 586, 644, 704, 766, 832, 900, 970, 1044, 1120, 1198, 1280, 1364, 1450, 1540, 1632, 1726, 1824, 1924, 2026, 2132, 2240, 2350, 2464, 2580, 2698, 2820, 2944, 3070, 3200, 3332
Offset: 0
Illustrations for n = 1..8:
_ _ _ _ _ _
|_| | _| | _|_|
|_|_| |_| _|
|_|_|_|
a(1) = 4 a(2) = 10 a(3) = 20
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _|_| | | _|_| _| | _|_| _|_|
|_| _|_| |_| _|_| | |_| _|_| _|
|_|_| _| |_|_| _|_| |_|_| _|_| |
|_ _|_|_| | _|_| _| | _|_| _|_|
|_|_ _|_|_| |_| _|_| _|
|_|_|_ _|_|_|
a(4) = 32 a(5) = 46 a(6) = 64
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
| _|_| _|_| | | _|_| _|_| _|
|_| _|_| _|_| |_| _|_| _|_| |
|_|_| _|_| _| |_|_| _|_| _|_|
| _|_| _|_| | | _|_| _|_| _|
|_| _|_| _|_| |_| _|_| _|_| |
|_|_| _|_| _| |_|_| _|_| _|_|
|_ _|_|_ _|_|_| | _|_| _|_| _|
|_|_ _|_|_ _|_|_|
a(7) = 84 a(8) = 106
Showing 1-6 of 6 results.
Comments